scholarly journals Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells

2018 ◽  
Author(s):  
Ashley J. Earle ◽  
Tyler J. Kirby ◽  
Gregory R. Fedorchak ◽  
Philipp Isermann ◽  
Jineet Patel ◽  
...  

ABSTRACTMutations in the human LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A and C, cause autosomal dominant Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy, limb-girdle muscular dystrophy, and other diseases collectively known as laminopathies. The molecular mechanisms responsible for these diseases remain incompletely understood, but the muscle-specific defects suggest that mutations may render nuclei more susceptible to mechanical stress. Using three mouse models of muscle laminopathies, we found that Lmna mutations caused extensive NE abnormalities, consisting of chromatin protrusions into the cytoplasm and transient rupture of the NE in skeletal muscle cells. NE damage was associated with DNA damage, activation of DNA damage response pathways, and reduced viability. Intriguingly, NE damage resulted from nuclear migration in maturing skeletal muscle cells, rather than actomyosin contractility. NE damage and DNA damage was reduced by either depletion of kinesin-1 or disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. LINC complex disruption rescued myofiber function and viability in Lmna mutant myofibers, indicating that the myofiber dysfunction is the result of mechanically induced NE damage. The extent of NE damage and DNA damage in Lmna mouse models correlated with the disease onset and severity in vivo. Moreover, inducing DNA damage in wild-type muscle cells was sufficient to phenocopy the reduced cell viability of lamin A/C-deficient muscle cells, suggesting a causative role of DNA damage in disease pathogenesis. Corroborating the mouse model data, muscle biopsies from patients with LMNA muscular dystrophy revealed significant DNA damage compared to age-matched controls, particularly in severe cases of the disease. Taken together, these findings point to a new and important role of DNA damage as a pathogenic contributor for LMNA skeletal muscle diseases.


2019 ◽  
Vol 19 (4) ◽  
pp. 464-473 ◽  
Author(s):  
Ashley J. Earle ◽  
Tyler J. Kirby ◽  
Gregory R. Fedorchak ◽  
Philipp Isermann ◽  
Jineet Patel ◽  
...  


2021 ◽  
Vol 22 (10) ◽  
pp. 5276
Author(s):  
Coralie Croissant ◽  
Romain Carmeille ◽  
Charlotte Brévart ◽  
Anthony Bouter

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.











Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5098
Author(s):  
Parisa Vahidi Ferdowsi ◽  
Rachel Ng ◽  
John Adulcikas ◽  
Sukhwinder Singh Sohal ◽  
Stephen Myers

Zinc is an essential metal ion involved in many biological processes. Studies have shown that zinc can activate several molecules in the insulin signalling pathway and the concomitant uptake of glucose in skeletal muscle cells. However, there is limited information on other potential pathways that zinc can activate in skeletal muscle. Accordingly, this study aimed to identify other zinc-activating pathways in skeletal muscle cells to further delineate the role of this metal ion in cellular processes. Mouse C2C12 skeletal muscle cells were treated with insulin (10 nM), zinc (20 µM), and the zinc chelator TPEN (various concentrations) over 60 min. Western blots were performed for the zinc-activation of pAkt, pErk, and pCreb. A Cignal 45-Reporter Array that targets 45 signalling pathways was utilised to test the ability of zinc to activate pathways that have not yet been described. Zinc and insulin activated pAkt over 60 min as expected. Moreover, the treatment of C2C12 skeletal muscle cells with TPEN reduced the ability of zinc to activate pAkt and pErk. Zinc also activated several associated novel transcription factor pathways including Nrf1/Nrf2, ATF6, CREB, EGR1, STAT1, AP-1, PPAR, and TCF/LEF, and pCREB protein over 120 min of zinc treatment. These studies have shown that zinc’s activity extends beyond that of insulin signalling and plays a role in modulating novel transcription factor activated pathways. Further studies to determine the exact role of zinc in the activation of transcription factor pathways will provide novel insights into this metal ion actions.



2016 ◽  
Vol 48 ◽  
pp. 582
Author(s):  
Leslie E. Neidert ◽  
C. Brooks Mobley ◽  
Michael D. Roberts ◽  
Heidi A. Kluess


Sign in / Sign up

Export Citation Format

Share Document