scholarly journals DdcA antagonizes a bacterial DNA damage checkpoint

2018 ◽  
Author(s):  
Peter E. Burby ◽  
Zackary W. Simmons ◽  
Lyle A. Simmons

AbstractBacteria coordinate DNA replication and cell division, ensuring that a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage or impediments to DNA replication, a cell cycle checkpoint is activated to delay cell division by expressing a cell division inhibitor. The prevailing model for bacterial DNA damage checkpoints is that activation of the DNA damage response and protease mediated degradation of the cell division inhibitor is sufficient to regulate the checkpoint process. Our recent genome-wide screens identified the geneddcAas critical for surviving exposure to a broad spectrum of DNA damage. TheddcAdeletion phenotypes are dependent on the checkpoint enforcement protein YneA. We found that expression of the checkpoint recovery proteases could not compensate forddcAdeletion. Similarly, expression ifddcAcould not compensate for the absence of the checkpoint recovery proteases, indicating that DdcA function is distinct from the checkpoint recovery step. Deletion ofddcAresulted in sensitivity toyneAoverexpression independent of YneA protein levels or stability, further supporting the conclusion that DdcA regulates YneA through a proteolysis independent mechanism. Using a functional GFP-YneA we found that DdcA inhibits YneA activity independent of YneA localization, suggesting that DdcA may regulate YneA access to its target. These results uncover a regulatory step that is important for controlling the DNA damage checkpoint in bacteria, and suggests that the typical mechanism of degrading the checkpoint enforcement protein is insufficient to control the rate of cell division in response to DNA damage.Author SummaryAll cells coordinate DNA replication and cell division. When cells encounter DNA damage, the process of DNA replication is slowed and the cell must also delay cell division. In bacteria, the process has long been thought to occur using two principle modes of regulation. The first, is RecA coated ssDNA transmits the signal of DNA damage through inactivation of the repressor of the DNA damage (SOS) response regulon, which results in expression of a cell division inhibitor establishing the checkpoint. The second principle step is protease mediated degradation of the cell division inhibitor relieving the checkpoint. Recent work by our lab and others has suggested that this process may be more complex than originally thought. Here, we investigated a gene of unknown function that we previously identified as important for survival when the bacteriumBacillus subtilisis exposed to DNA damage. We found that this gene negatively regulates the cell division inhibitor, but is functionally distinct from the checkpoint recovery process. We provide evidence that this gene functions as an antagonist to establishing the DNA damage checkpoint. Our study uncovers a novel layer of regulation in the bacterial DNA damage checkpoint process challenging the longstanding models established in the bacterial DNA damage response field.

2018 ◽  
Author(s):  
Peter E. Burby ◽  
Zackary W. Simmons ◽  
Jeremy W. Schroedert ◽  
Lyle A. Simmons

AbstractThe DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells sense successful DNA repair and promote checkpoint recovery is unknown. By using a high-throughput, forward genetic screen, we identified two unrelated proteases, YlbL and CtpA, that promote DNA damage checkpoint recovery inBacillus subtilis. Deletion of both proteases leads to accumulation of the checkpoint protein YneA. DNA damage sensitivity and increased cell elongation in protease mutants depends onyneA. Further, expression of YneA in protease mutants was sufficient to inhibit cell proliferation. Finally, we show that one of the two proteases, CtpA, directly cleaves YneAin vitro. With these results, we report the mechanism for DNA damage checkpoint recovery in bacteria that use membrane bound cell division inhibitors.


2007 ◽  
Vol 27 (19) ◽  
pp. 6948-6961 ◽  
Author(s):  
David C. Schwartz ◽  
Rachael Felberbaum ◽  
Mark Hochstrasser

ABSTRACT Eukaryotic genome integrity is maintained via a DNA damage checkpoint that recognizes DNA damage and halts the cell cycle at metaphase, allowing time for repair. Checkpoint signaling is eventually terminated so that the cell cycle can resume. How cells restart cell division following checkpoint termination is poorly understood. Here we show that the SUMO protease Ulp2 is required for resumption of cell division following DNA damage-induced arrest in Saccharomyces cerevisiae, although it is not required for DNA double-strand break repair. The Rad53 branch of the checkpoint pathway generates a signal countered by Ulp2 activity following DNA damage. Interestingly, unlike previously characterized adaptation mutants, ulp2Δ mutants do not show persistent Rad53 phosphorylation following DNA damage, suggesting checkpoint signaling has been terminated and no longer asserts an arrest in these cells. Using Cdc14 localization as a cell cycle indicator, we show that nearly half of cells lacking Ulp2 can escape a checkpoint-induced metaphase arrest despite their inability to divide again. Moreover, half of permanently arrested ulp2Δ cells show evidence of an aberrant mitotic spindle, suggesting that Ulp2 is required for proper spindle dynamics during cell cycle resumption following a DNA damage-induced cell cycle arrest.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2006 ◽  
Vol 17 (1) ◽  
pp. 539-548 ◽  
Author(s):  
Tania M. Roberts ◽  
Michael S. Kobor ◽  
Suzanne A. Bastin-Shanower ◽  
Miki Ii ◽  
Sonja A. Horte ◽  
...  

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107Δ, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui-Ju Hsieh ◽  
Wei Zhang ◽  
Shu-Hong Lin ◽  
Wen-Hao Yang ◽  
Jun-Zhong Wang ◽  
...  

Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


Sign in / Sign up

Export Citation Format

Share Document