scholarly journals Neural Correlates of Causal Confounding

2018 ◽  
Author(s):  
Mimi Liljeholm

AbstractAs scientists, we are keenly aware that if putative causes perfectly co-vary, the independent influence of neither can be discerned – a “no confounding” constraint on inference, fundamental to philosophical and statistical perspectives on causation. Intriguingly, a substantial behavioral literature suggests that naïve human reasoners, adults and children, are tacitly sensitive to causal confounding. Here, a combination of fMRI and cognitive computational modeling was used to investigate neural substrates mediating such sensitivity. While being scanned, participants observed and judged the influences of various putative causes with confounded or non-confounded, deterministic or stochastic, influences. During judgments requiring generalization of causal knowledge from a feedback-based learning context to a transfer probe, activity in the dorsomedial prefrontal cortex (DMPFC) was better accounted for by a Bayesian causal model, sensitive to both confounding and stochasticity, than a purely error-driven algorithm, sensitive only to stochasticity. Implications for the detection and estimation of distinct forms of uncertainty, and for a neural mediation of domain general constraints on causal induction, are discussed.

2020 ◽  
Vol 32 (2) ◽  
pp. 301-314
Author(s):  
Mimi Liljeholm

As scientists, we are keenly aware that if putative causes perfectly covary, the independent influence of neither can be discerned—a “no confounding” constraint on inference, fundamental to philosophical and statistical perspectives on causation. Intriguingly, a substantial behavioral literature suggests that naïve human reasoners, adults and children, are tacitly sensitive to causal confounding. Here, a combination of fMRI and computational cognitive modeling was used to investigate neural substrates mediating such sensitivity. While being scanned, participants observed and judged the influences of various putative causes with confounded or nonconfounded, deterministic or stochastic, influences. During judgments requiring generalization of causal knowledge from a feedback-based learning context to a transfer probe, activity in the dorsomedial pFC was better accounted for by a Bayesian causal model, sensitive to both confounding and stochasticity, than a purely error-driven algorithm, sensitive only to stochasticity. Implications for the detection and estimation of distinct forms of uncertainty, and for a neural mediation of domain-general constraints on causal induction, are discussed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Matthew Piva ◽  
Kayla Velnoskey ◽  
Ruonan Jia ◽  
Amrita Nair ◽  
Ifat Levy ◽  
...  

Few studies have addressed the neural computations underlying decisions made for others despite the importance of this ubiquitous behavior. Using participant-specific behavioral modeling with univariate and multivariate fMRI approaches, we investigated the neural correlates of decision-making for self and other in two independent tasks, including intertemporal and risky choice. Modeling subjective valuation indicated that participants distinguished between themselves and others with dissimilar preferences. Activity in the dorsomedial prefrontal cortex (dmPFC) and ventromedial prefrontal cortex (vmPFC) was consistently modulated by relative subjective value. Multi-voxel pattern analysis indicated that activity in the dmPFC uniquely encoded relative subjective value and generalized across self and other and across both tasks. Furthermore, agent cross-decoding accuracy between self and other in the dmPFC was related to self-reported social attitudes. These findings indicate that the dmPFC emerges as a medial prefrontal node that utilizes a task-invariant mechanism for computing relative subjective value for self and other.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Blake Woodside ◽  
Katharine Dunlop ◽  
Charlene Sathi ◽  
Eileen Lam ◽  
Brigitte McDonald ◽  
...  

Abstract Background Patients with anorexia nervosa (AN) face severe and chronic illness with high mortality rates, despite our best currently available conventional treatments. Repetitive transcranial magnetic stimulation (rTMS) has shown increasing efficacy in treatment-refractory cases across a variety of psychiatric disorders comorbid with AN, including major depression, Obsessive Compulsive Disorder (OCD), and Post traumatic Stress Disorder (PTSD). However, to date few studies have examined the effects of a course of rTMS on AN pathology itself. Methods Nineteen patients with AN underwent a 20–30 session open-label course of dorsomedial prefrontal rTMS for comorbid Major Depressive Disorder (MDD) ± PTSD. Resting-state functional MRI was acquired at baseline in 16/19 patients. Results Following treatment, significant improvements were seen in core AN pathology on the EDE global scale, and to a lesser extent on the shape and weight concerns subscales. Significant improvements in comorbid anxiety, and to a lesser extent depression, also ensued. The greatest improvements were seen in patients with lower baseline functional connectivity from the dorsomedial prefrontal cortex (DMPFC) target to regions in the right frontal pole and left angular gyrus. Conclusions Despite the limited size of this preliminary, open-label study, the results suggest that rTMS is safe in AN, and may be useful in addressing some core domains of AN pathology. Other targets may also be worth studying in this population, in future sham-controlled trials with larger sample sizes. Trial registration Trial registration ClinicalTrials.gov NCT04409704. Registered May 282,020. Retrospectively registered.


2016 ◽  
Vol 16 (4) ◽  
pp. 626-634 ◽  
Author(s):  
Chiara Ferrari ◽  
Tomaso Vecchi ◽  
Alexander Todorov ◽  
Zaira Cattaneo

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1243
Author(s):  
Yit Yin Wee ◽  
Shing Chiang Tan ◽  
KuokKwee Wee

Background: Bayesian Belief Network (BBN) is a well-established causal framework that is widely adopted in various domains and has a proven track record of success in research and application areas. However, BBN has weaknesses in causal knowledge elicitation and representation. The representation of the joint probability distribution in the Conditional Probability Table (CPT) has increased the complexity and difficulty for the user either in comprehending the causal knowledge or using it as a front-end modelling tool.   Methods: This study aims to propose a simplified version of the BBN ─ Bayesian causal model, which can represent the BBN intuitively and proposes an inference method based on the simplified version of BBN. The CPT in the BBN is replaced with the causal weight in the range of[-1,+1] to indicate the causal influence between the nodes. In addition, an inferential algorithm is proposed to compute and propagate the influence in the causal model.  Results: A case study is used to validate the proposed inferential algorithm. The results show that a Bayesian causal model is able to predict and diagnose the increment and decrement as in BBN.   Conclusions: The Bayesian causal model that serves as a simplified version of BBN has shown its advantages in modelling and representation, especially from the knowledge engineering perspective.


2013 ◽  
Vol 4 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Mili S. Kuruvilla ◽  
Jordan R. Green ◽  
Hasan Ayaz ◽  
Daniel L. Murman

Sign in / Sign up

Export Citation Format

Share Document