scholarly journals wnt4a promotes female development and reproductive duct elongation in zebrafish

2018 ◽  
Author(s):  
Michelle E. Kossack ◽  
Samantha K. High ◽  
Rachel E. Hopton ◽  
Yi-lin Yan ◽  
John H. Postlethwait ◽  
...  

ABSTRACTIn laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as male or female. Many sex determination and differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovary and Müllerian duct development, where it function, in part, to antagonize the male-promoting FGF9 signal. Wnt4 is highly conserved in non-mammalian vertebrates, but it is not known if Wnt4 plays a role in sex determination and/or the differentiation of sex organs outside of mammals. This is an especially interesting question in teleost, such as zebrafish, because they lack an Fgf9 ortholog. Here we show that wnt4a is the ortholog of mammalian Wnt4, and that wnt4b was present in the last common ancestor of humans and zebrafish, but was lost in mammals. We found that wnt4a is expressed in the somatic cells of juvenile gonads during the time sex determination likely occurs. We show that wnt4a loss-of-function mutants develop predominantly as males and conclude that wnt4a activity promotes female sex determination in zebrafish. Additionally, both male and female wnt4a mutants are sterile because their reproductive ducts do not connect to the vent, where wnt4a is normally expressed. Yet when dissected from homozygous wnt4a mutant gonads, both sperm and eggs can produce fertile offspring. Together these results strongly argue that Wnt4a is a conserved regulator of female sex determination and reproductive duct development in non-mammalian vertebrates.SUMMARYWnt4 is a key regulator of ovary development in mammals, but it is not known if it plays a similar role in other vertebrates. Here we show that zebrafish wnt4a is the ortholog of mammalian Wnt4. We show that wnt4a is expressed in zebrafish somatic gonad cells during the time sex determination likely occurs. Through analysis of wnt4a mutants, we show that Wnt4a promotes female sex determination and the development of the male and female reproductive. We conclude that Wnt4/Wnt4a is likely a conserved regulator of ovarian and reproductive duct development in all vertebrates

1984 ◽  
Vol 26 (6) ◽  
pp. 748-751
Author(s):  
Ray Feraday

Female heterogamety in the midge Chironomus tentans has been previously reported and attributed to a dominant female determiner. Published results are not consistent with the interpretation, and the female heterogamety, if any, can be better explained by a model involving a weakened male determiner. Suggestions are made for crosses between populations with different sex-determining mechanisms that would discriminate between models for the evolution of female heterogamety, and serve to determine whether indeed female development is the norm in the absence of any parental sex chromosomes.Key words: Chironomus, heterogamety, sex determination, sex chromosome.


2016 ◽  
Vol 113 (52) ◽  
pp. 15036-15041 ◽  
Author(s):  
Sébastien Leclercq ◽  
Julien Thézé ◽  
Mohamed Amine Chebbi ◽  
Isabelle Giraud ◽  
Bouziane Moumen ◽  
...  

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare. We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


2021 ◽  
Author(s):  
Pradeep Kumar Bhaskar ◽  
Sheryl Southard ◽  
Kelly Baxter ◽  
Mark Van Doren

SummaryThe establishment of sexual identity in germ cells is critical for the development of male and female germline stem cells (GSCs) and production of sperm vs. eggs. Thus, this process is essential for sexual reproduction and human fertility. Germ cells depend on signals from the somatic gonad to determine their sex, but in organisms such as flies, mice and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ cell-intrinsic cues act together to regulate germline sex determination is a key question about which little is known. We have found that JAK/STAT signaling in the GSC niche promotes male identity in germ cells and GSCs, in part by activating expression of the epigenetic reader Phf7. We have also found that JAK/STAT signaling is blocked in XX (female) germ cells through the intrinsic action of the sex determination gene Sex lethal, which preserves female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.


2008 ◽  
Vol 2 (2) ◽  
pp. 73-77 ◽  
Author(s):  
J. Francois ◽  
M. Th. Matton-Van Leuven ◽  
J. Acosta

Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 755-769 ◽  
Author(s):  
T Schedl ◽  
P L Graham ◽  
M K Barton ◽  
J Kimble

Abstract In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mutants is masculinized. In contrast, the germline of tra-1(lf) XX and XO animals is often feminized; a brief period of spermatogenesis is followed by oogenesis, rather than the continuous spermatogenesis observed in wild-type males. In addition, abnormal gonadal (germ line and somatic gonad) phenotypes are observed which may reflect defects in development or function of somatic gonad regulatory cells. Analysis of germline feminization and abnormal gonadal phenotypes of the various mutations alone or in trans to a deficiency reveals that they cannot be ordered in an allelic series and they do not converge to a single phenotypic endpoint. These observations lead to the suggestion that tra-1 may produce multiple products and/or is autoregulated. One interpretation of the germline feminization is that tra-1(+) is necessary for continued specification of spermatogenesis in males. We also report the isolation and characterization of tra-1 gain-of-function (gf) mutations with novel phenotypes. These include temperature sensitive, recessive germline feminization, and partial somatic loss-of-function phenotypes.


2012 ◽  
Vol 8 (5) ◽  
pp. 787-789 ◽  
Author(s):  
Clemens Küpper ◽  
Jakob Augustin ◽  
Scott Edwards ◽  
Tamás Székely ◽  
András Kosztolányi ◽  
...  

Two models, Z Dosage and Dominant W , have been proposed to explain sex determination in birds, in which males are characterized by the presence of two Z chromosomes, and females are hemizygous with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene triggers male development, whereas the Dominant W model postulates that a still unknown W-linked gene triggers female development. Using 33 polymorphic microsatellite markers, we describe a female triploid Kentish plover Charadrius alexandrinus identified by characteristic triallelic genotypes at 14 autosomal markers that produced viable diploid offspring. Chromatogram analysis showed that the sex chromosome composition of this female was ZZW. Together with two previously described ZZW female birds, our results suggest a prominent role for a female determining gene on the W chromosome. These results imply that avian sex determination is more dynamic and complex than currently envisioned.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009465
Author(s):  
Sarah L. Whiteley ◽  
Clare E. Holleley ◽  
Susan Wagner ◽  
James Blackburn ◽  
Ira W. Deveson ◽  
...  

How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; ‘CaRe’ status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.


2019 ◽  
Vol 124 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Jennifer Blake-Mahmud ◽  
Lena Struwe

Abstract Background and Aims The ability of individuals to change sex during their lifetime is known as environmental sex determination (ESD). This represents a unique life history trait, allowing plants to allocate resources differentially to male and female functions across lifetimes, potentially maximizing fitness in response to changing environmental or internal cues. In this study, Acer pensylvanicum, a species with an unconfirmed sex determination system, was investigated to see what patterns in sex expression existed across multiple years, if there were sex-based differences in growth and mortality, and whether this species conformed to theoretical predictions that females are larger and in better condition. Methods Patterns of sex expression were documented over 4 years in a phenotypically subdioecious A. pensylvanicum population located in New Jersey, USA, and data on size, mortality, health and growth were collected. A machine-learning algorithm known as a boosted classification tree was used to develop a model to predict the sex of a tree based on its condition, size and previous sex. Results In this study, 54 % of the trees switched sex expression during a 4-year period, with 26 % of those trees switching sex at least twice. Consistently monoecious trees could change relative sex expression by as much as 95 %. Both size and condition were influential in predicting sex, with condition exerting three times more relative influence than size on expressed sex. Contrary to theoretical predictions, the model showed that full female sex expression did not increase with size. Healthy trees were more likely to be male; predicted female sex expression increased with deteriorating health. Growth rate negatively correlated with multiple years of female sex expression. Populations maintained similar male-skewed sex ratios across years and locations and may result from differential mortality: 75 % of dead trees flowered female immediately before death. Conclusions This study shows conclusively that A. pensylvanicum exhibits ESD and that femaleness correlates with decreased health, in contrast to prevailing theory. The mortality findings advance our understanding of puzzling non-equilibrium sex ratios and life history trade-offs resulting from male and female sex expression.


Endocrinology ◽  
2017 ◽  
Vol 158 (11) ◽  
pp. 3713-3715
Author(s):  
Gregor Majdic

2009 ◽  
Vol 21 (8) ◽  
pp. 943 ◽  
Author(s):  
Paul D. Waters ◽  
Jennifer A. Marshall Graves

In vertebrates, a highly conserved pathway of genetic events controls male and female development, to the extent that many genes involved in human sex determination are also involved in fish sex determination. Surprisingly, the master switch to this pathway, which intuitively could be considered the most critical step, is inconsistent between vertebrate taxa. Interspersed in the vertebrate tree there are species that determine sex by environmental cues such as the temperature at which eggs are incubated, and then there are genetic sex-determination systems, with male heterogametic species (XY systems) and female heterogametic species (ZW systems), some of which have heteromorphic, and others homomorphic, sex chromosomes. This plasticity of sex-determining switches in vertebrates has made tracking the events of sex chromosome evolution in amniotes a daunting task, but comparative gene mapping is beginning to reveal some striking similarities across even distant taxa. In particular, the recent completion of the platypus genome sequence has completely changed our understanding of when the therian mammal X and Y chromosomes first arose (they are up to 150 million years younger than previously thought) and has also revealed the unexpected insight that sex determination of the amniote ancestor might have been controlled by a bird-like ZW system.


Sign in / Sign up

Export Citation Format

Share Document