scholarly journals Conversion of graded presynaptic climbing fiber activity into graded postsynaptic Ca2+ signals by Purkinje cell dendrites

2018 ◽  
Author(s):  
Michael A. Gaffield ◽  
Jason M. Christie

AbstractThe brain must make sense of external stimuli to generate relevant behavior. We used a combination of in vivo approaches to investigate how the cerebellum processes sensory-related information. We found that the inferior olive encodes contexts of sensory-associated external cues in a graded manner, apparent in the presynaptic activity of their axonal projections in the cerebellar cortex. Further, individual climbing fibers were broadly responsive to different sensory modalities but relayed sensory-related information to the cortex in a lobule-dependent manner. Purkinje cell dendrites faithfully transformed this climbing fiber activity into dendrite-wide Ca2+ signals without a direct contribution from the mossy fiber pathway. These results demonstrate that the size of climbing fiber-evoked Ca2+ signals in Purkinje cell dendrites is largely determined by the firing level of climbing fibers. This coding scheme emphasizes the overwhelming role of the inferior olive in generating salient signals useful for instructing plasticity and learning.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Michael A Gaffield ◽  
Matthew J M Rowan ◽  
Samantha B Amat ◽  
Hirokazu Hirai ◽  
Jason M Christie

Motor learning involves neural circuit modifications in the cerebellar cortex, likely through re-weighting of parallel fiber inputs onto Purkinje cells (PCs). Climbing fibers instruct these synaptic modifications when they excite PCs in conjunction with parallel fiber activity, a pairing that enhances climbing fiber-evoked Ca2+ signaling in PC dendrites. In vivo, climbing fibers spike continuously, including during movements when parallel fibers are simultaneously conveying sensorimotor information to PCs. Whether parallel fiber activity enhances climbing fiber Ca2+ signaling during motor behaviors is unknown. In mice, we found that inhibitory molecular layer interneurons (MLIs), activated by parallel fibers during practiced movements, suppressed parallel fiber enhancement of climbing fiber Ca2+ signaling in PCs. Similar results were obtained in acute slices for brief parallel fiber stimuli. Interestingly, more prolonged parallel fiber excitation revealed latent supralinear Ca2+ signaling. Therefore, the balance of parallel fiber and MLI input onto PCs regulates concomitant climbing fiber Ca2+ signaling.


Neuron ◽  
2014 ◽  
Vol 84 (1) ◽  
pp. 137-151 ◽  
Author(s):  
Yo Otsu ◽  
Païkan Marcaggi ◽  
Anne Feltz ◽  
Philippe Isope ◽  
Mihaly Kollo ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Angela K Nietz ◽  
Jada H Vaden ◽  
Luke T Coddington ◽  
Linda Overstreet-Wadiche ◽  
Jacques I Wadiche

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.


1975 ◽  
Vol 1 (6) ◽  
pp. 301-304 ◽  
Author(s):  
Saburo Kawaguchi ◽  
Tetsuro Yamamoto ◽  
Noboru Mizuno ◽  
Nobuharu Iwahori

2003 ◽  
Vol 90 (4) ◽  
pp. 2349-2357 ◽  
Author(s):  
Daniel A. Nicholson ◽  
John H. Freeman

The development of synaptic interconnections between the cerebellum and inferior olive, the sole source of climbing fibers, could contribute to the ontogeny of certain forms of motor learning (e.g., eyeblink conditioning). Purkinje cell complex spikes are produced exclusively by climbing fibers and exhibit short- and long-latency activity in response to somatosensory stimulation. Previous studies have demonstrated that evoked short- and long-latency complex spikes generally occur on separate trials and that this response segregation is regulated by inhibitory feedback to the inferior olive. The present experiment tested the hypothesis that complex spikes evoked by periorbital stimulation are regulated by inhibitory feedback from the cerebellum and that this feedback develops between postnatal days (PND) 17 and 24. Recordings from individual Purkinje cell complex spikes in urethan-anesthetized rats indicated that the segregation of short- and long-latency evoked complex spike activity emerges between PND17 and PND24. In addition, infusion of picrotoxin, a GABAA-receptor antagonist, into the inferior olive abolished the response pattern segregation in PND24 rats, producing evoked complex spike response patterns similar to those characteristic of younger rats. These data support the view that cerebellar feedback to the inferior olive, which is exclusively inhibitory, undergoes substantial changes in the same developmental time window in which certain forms of motor learning emerge.


2019 ◽  
Author(s):  
Alyssa Michelle Wilson ◽  
Richard Schalek ◽  
Adi Suissa-Peleg ◽  
Thouis Ray Jones ◽  
Seymour Knowles-Barley ◽  
...  

SUMMARYDuring postnatal development, cerebellar climbing fibers strongly innervate a subset of their original Purkinje cell targets and eliminate their connections from the rest. In the adult, each climbing fiber innervates a small number of Purkinje cells and each Purkinje cell is innervated by a single climbing fiber. To get insight about the processes responsible for this remapping, we reconstructed serial electron microscopy datasets from mice during the first postnatal week. In contrast to adult connectivity, individual neonatal climbing fibers innervate many nearby Purkinje cells, and multiple climbing fibers innervate each Purkinje cell. Between postnatal days 3 and 7, Purkinje cells retract long dendrites and grow many proximal dendritic processes. On this changing landscape, individual climbing fibers selectively add many synapses to a subset of Purkinje cell targets in a positive-feedback manner, without pruning synapses from other Purkinje cells. The active zone sizes of synapses associated with powerful versus weak inputs are indistinguishable. These results show that changes in synapse number rather than synapse size are the predominant form of early developmental plasticity. Finally, although multiple climbing fibers innervate each Purkinje cell in early postnatal development, the number of climbing fibers and Purkinje cells in a local cerebellar region nearly match. Thus, initial over-innervation of Purkinje cells by climbing fibers is economical, in that the number of axons entering a region is enough to assure that each axon ends up with a postsynaptic target, and that none branched there in vain.HIGHLIGHTSDeveloping climbing fibers establish synapses on many neighboring Purkinje cells unlike the sparse pattern of innervation in later lifeClimbing fibers add many synapses onto a few of their Purkinje targets before the pruning stage in a rich-get-richer type processThe synapse sizes of strengthened and weakened climbing fiber inputs are indistinguishable.Exuberant branching of climbing fiber axons in early postnatal life appears to be economical because the numbers of axons and Purkinje cells in a local region match, ensuring that each axon can establish a long-lasting connection thereBLURBHigh-resolution serial electron microscopy reconstructions reveal that climbing fiber-Purkinje cell synaptic refinement in the developing cerebellum begins with significant synapse addition. Climbing fibers focus their synapses onto a smaller number of Purkinje cells by selectively adding synapses onto some target cells. All axons that project to a region in development play a role in the final connectivity.


2018 ◽  
Vol 17 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Polina A. Egorova ◽  
Alexandra V. Gavrilova ◽  
Ilya B. Bezprozvanny

2021 ◽  
Author(s):  
Jan Voogd

AbstractGerbrandus Jelgersma published extensively on the (pathological) anatomy of the cerebellum between 1886 and 1934. Based on his observations on the double innervation of the Purkinje cells, he formulated a hypothesis on the function of the cerebellum. Both afferent systems of the cerebellum, the mossy fiber-parallel fiber system and the climbing fibers terminate on the Purkinje cell dendrites. According to Jelgersma, the mossy fiber-parallel fiber system is derived from the pontine nuclei and the inferior olive, and would transmit the movement images derived from the cerebral cortex. Spinocerebellar climbing fibers would transmit information about the execution of the movement. When the Purkinje cell compares these inputs and notices a difference between instruction and execution, it sends a correction through the descending limb of the superior cerebellar peduncle to the anterior horn cells. Jelgersma postulates that this cerebro-cerebellar coordination system shares plasticity with other nervous connections because nerve cell dendritic protrusions possess what he called amoeboid mobility: dendritic protrusions can be extended or retracted and are so able to create new connections or to abolish them. Jelgersma’s theories are discussed against the background of more recent theories of cerebellar function that, similarly, are based on the double innervation of the Purkinje cells. The amoeboid hypothesis is traced to its roots in the late nineteenth century.


Sign in / Sign up

Export Citation Format

Share Document