scholarly journals Illustrating phylogenetic placement of fossils using RoguePlots: An example from ichneumonid parasitoid wasps (Hymenoptera, Ichneumonidae) and an extensive morphological matrix

2018 ◽  
Author(s):  
Seraina Klopfstein ◽  
Tamara Spasojevic

AbstractThe fossil record constitutes the primary source of information about the evolutionary history of extant and extinct groups, and many analyses of macroevolution rely on fossils that are accurately placed within phylogenies. To avoid misinterpretation of the fossil record, especially by non-palaeontologists, the proper assessment and communication of uncertainty in fossil placement is crucial. We here use Bayesian morphological phylogenetics to evaluate the classifications of fossil parasitoid wasps (Hymenoptera, Ichneumonidae) and introduce ‘RoguePlots’ to illustrate placement uncertainty on the phylogeny of extant taxa. Based on an extensive, newly constructed morphological matrix of 222 characters in 24 fossil and 103 extant taxa, we test three different aspects of models of morphological evolution. We find that a model that includes ordered characters, among-character rate variation, and a state-space restricted to observed states achieves the highest marginal likelihoods. The individual RoguePlots reveal large differences in confidence in the placement of the different fossils and allow some refinements to their classification: Polyhelictes bipolarus and Ichninsum appendicrassum are moved from an uncertain subfamily placement to Pimplinae, Plectiscidea lanhami is transferred to Allomacrus in Cylloceriinae (Allomacrus lanhami, comb. nov.), Lithotorus cressoni is moved from Diplazontinae to Orthocentrinae, and we note uncertainty in the generic placement of Xanthopimpla? messelensis. We discuss potential artefacts that might result in biased posterior probabilities in Bayesian morphological phylogenetic analyses, pertaining to character and taxon sampling, fossilization biases, and model misspecification. Finally, we suggest future directions both in ichneumonid palaeontology, in the modelling of morphological evolution, and in the way Bayesian phylogenetics can improve both assessment and representation of fossil placement uncertainty.

2015 ◽  
Author(s):  
Walter G. Joyce ◽  
Márton Rabi

Background. Over the course of the last decades, much effort has gone into unraveling the biogeographic history of turtles, but while much progress has been achieved in resolving post- Jurassic dispersal events, traditional phylogenetic hypotheses have yielded incongruous results in regards to the early history of the group. Methods. We re-evaluate the fossil record of turtles in context of recent phylogenetic analyses and fossil finds, including the extensive record of fragmentary but diagnostic remains. Given that near-coastal and marine turtles readily disperse across aquatic barriers, a broad set of neritic to pelagic groups were disregarded from consideration. Significant disagreement still exists among current phylogenetic hypotheses and we therefore place much effort into tracing the fossil record of unambiguously monophyletic groups. We finally employed molecular backbone constraints, given that the molecular phylogenies are more consistent with the fossil record than current, morphological phylogenies. Results. Among derived, aquatic turtles, we recognize four clades that can be traced back to discrete biogeographic centers: Paracryptodira in North America and Europe, Pan- Cryptodira in Asia, Pan-Pelomedusoides in northern Gondwanan landmasses and Pan- Chelidae in southern Gondwanan landmasses. This pattern is partially mirrored by three clades of primarily terrestrial, basal turtles: Solemydidae in North American and Europe, Sichuanchelyidae in Asia, and Meiolaniformes sensu stricto in southern Gondwanan landmasses. Although the exact interrelationships of these clades remain unclear, most can be traced back to the Middle Jurassic. Discussion. The conclusion that the two primary lineages of pleurodires and paracryptodires can be traced back to mutually exclusive land masses is not novel, but the realization that the early history of pan-cryptodires is restricted to Asia has not been realized previously, because traditional phylogenies implied an early, global presence of pan-cryptodires. The timing of the origin of the three primary clades of derived turtles (i.e., Pan-Pleurodira, Pan-Cryptodira, and Paracryptodira) correlates with the opening of the central Atlantic and the formation of the Turgai Strait in the Middle Jurassic, somewhat later than predicted by molecular calibration studies. The primary diversity of extant turtles therefore appears to have been driven by vicariance. A similar hypothesis could also be formulated for the three clades of basal turtles that survive at least into the Late Cretaceous, but given that their combined monophyly remains uncertain, it is unclear if their diversity was also driven by vicariance, or if they emulate a vicariance-like pattern. Although most groups remained within their primary geographic range throughout their evolutionary history, the dominant vicariance signal was thoroughly obfuscated by rich dispersal from littoral to marine turtles and crown cryptodires.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10431
Author(s):  
James C. Lamsdell

Xiphosurans are aquatic chelicerates with a fossil record extending into the Early Ordovician and known from a total of 88 described species, four of which are extant. Known for their apparent morphological conservatism, for which they have gained notoriety as supposed ‘living fossils’, recent analyses have demonstrated xiphosurans to have an ecologically diverse evolutionary history, with several groups moving into non-marine environments and developing morphologies markedly different from those of the modern species. The combination of their long evolutionary and complex ecological history along with their paradoxical patterns of morphological stasis in some clades and experimentation among others has resulted in Xiphosura being of particular interest for macroevolutionary study. Phylogenetic analyses have shown the current taxonomic framework for Xiphosura—set out in the Treatise of Invertebrate Paleontology in 1955—to be outdated and in need of revision, with several common genera such as Paleolimulus Dunbar, 1923 and Limulitella Størmer, 1952 acting as wastebasket taxa. Here, an expanded xiphosuran phylogeny is presented, comprising 58 xiphosuran species as part of a 158 taxon chelicerate matrix coded for 259 characters. Analysing the matrix under both Bayesian inference and parsimony optimisation criteria retrieves a concordant tree topology that forms the basis of a genus-level systematic revision of xiphosuran taxonomy. The genera Euproops Meek, 1867, Belinurus König, 1820, Paleolimulus, Limulitella, and Limulus are demonstrated to be non-monophyletic and the previously synonymized genera Koenigiella Raymond, 1944 and Prestwichianella Cockerell, 1905 are shown to be valid. In addition, nine new genera (Andersoniella gen. nov., Macrobelinurus gen. nov., and Parabelinurus gen. nov. in Belinurina; Norilimulus gen. nov. in Paleolimulidae; Batracholimulus gen. nov. and Boeotiaspis gen. nov. in Austrolimulidae; and Allolimulus gen. nov., Keuperlimulus gen. nov., and Volanalimulus gen. nov. in Limulidae) are erected to accommodate xiphosuran species not encompassed by existing genera. One new species, Volanalimulus madagascarensis gen. et sp. nov., is also described. Three putative xiphosuran genera—Elleria Raymond, 1944, Archeolimulus Chlupáč, 1963, and Drabovaspis Chlupáč, 1963—are determined to be non-xiphosuran arthropods and as such are removed from Xiphosura. The priority of Belinurus König, 1820 over Bellinurus Pictet, 1846 is also confirmed. This work is critical for facilitating the study of the xiphosuran fossil record and is the first step in resolving longstanding questions regarding the geographic distribution of the modern horseshoe crab species and whether they truly represent ‘living fossils’. Understanding the long evolutionary history of Xiphosura is vital for interpreting how the modern species may respond to environmental change and in guiding conservation efforts.


Author(s):  
Leslie Heaphy

The history of the Negro Leagues has been studied and written about by those in academia but also by many outside the academic world. Journalists, in particular, have contributed greatly to the study of the Negro Leagues. When one studies the Negro Leagues (in existence 1920–1960) it becomes apparent quite quickly that the broader idea of black baseball goes hand in hand with understanding the long and detailed history of African Americans’ participation in America’s national pastime. Much of the scholarship started after 1970 following the publication of the seminal work, Only the Ball Was White (New York: Oxford University Press, 1992). Prior to 1970 most of the scholarship surrounding black baseball and the Negro Leagues came primarily from journalists writing about the individual players or teams. One exception to this would be some of the early works written about Jackie Robinson and Branch Rickey, focusing on their efforts to integrate Major League baseball. Another flurry of materials came out coinciding with the death of Robinson and the early election to the National Baseball Hall of Fame for Robinson and Satchel Paige, the legendary pitcher for the Kansas City Monarchs. The literature that exists today comes from a variety of academic disciplines and is not limited to historians. Articles and books are coming from history, journalism, economics, sports-related fields, sociology, English, and art history. What is lacking are primary source materials and journals devoted exclusively to the Negro Leagues.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liping Zeng ◽  
Katayoon Dehesh

Abstract Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates.


2020 ◽  
Author(s):  
Liping Zeng ◽  
Katayoon Dehesh

Abstract BackgroundIsoprenoids are amongst the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol dicyclophosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes.ResultsHere, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. ConclusionCollectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates.


2015 ◽  
Author(s):  
Walter G. Joyce ◽  
Márton Rabi

Background. Over the course of the last decades, much effort has gone into unraveling the biogeographic history of turtles, but while much progress has been achieved in resolving post- Jurassic dispersal events, traditional phylogenetic hypotheses have yielded incongruous results in regards to the early history of the group. Methods. We re-evaluate the fossil record of turtles in context of recent phylogenetic analyses and fossil finds, including the extensive record of fragmentary but diagnostic remains. Given that near-coastal and marine turtles readily disperse across aquatic barriers, a broad set of neritic to pelagic groups were disregarded from consideration. Significant disagreement still exists among current phylogenetic hypotheses and we therefore place much effort into tracing the fossil record of unambiguously monophyletic groups. We finally employed molecular backbone constraints, given that the molecular phylogenies are more consistent with the fossil record than current, morphological phylogenies. Results. Among derived, aquatic turtles, we recognize four clades that can be traced back to discrete biogeographic centers: Paracryptodira in North America and Europe, Pan- Cryptodira in Asia, Pan-Pelomedusoides in northern Gondwanan landmasses and Pan- Chelidae in southern Gondwanan landmasses. This pattern is partially mirrored by three clades of primarily terrestrial, basal turtles: Solemydidae in North American and Europe, Sichuanchelyidae in Asia, and Meiolaniformes sensu stricto in southern Gondwanan landmasses. Although the exact interrelationships of these clades remain unclear, most can be traced back to the Middle Jurassic. Discussion. The conclusion that the two primary lineages of pleurodires and paracryptodires can be traced back to mutually exclusive land masses is not novel, but the realization that the early history of pan-cryptodires is restricted to Asia has not been realized previously, because traditional phylogenies implied an early, global presence of pan-cryptodires. The timing of the origin of the three primary clades of derived turtles (i.e., Pan-Pleurodira, Pan-Cryptodira, and Paracryptodira) correlates with the opening of the central Atlantic and the formation of the Turgai Strait in the Middle Jurassic, somewhat later than predicted by molecular calibration studies. The primary diversity of extant turtles therefore appears to have been driven by vicariance. A similar hypothesis could also be formulated for the three clades of basal turtles that survive at least into the Late Cretaceous, but given that their combined monophyly remains uncertain, it is unclear if their diversity was also driven by vicariance, or if they emulate a vicariance-like pattern. Although most groups remained within their primary geographic range throughout their evolutionary history, the dominant vicariance signal was thoroughly obfuscated by rich dispersal from littoral to marine turtles and crown cryptodires.


2019 ◽  
Author(s):  
Daniel J. Field ◽  
Jacob S. Berv ◽  
Allison Y. Hsiang ◽  
Robert Lanfear ◽  
Michael J. Landis ◽  
...  

Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary history (specifically, the interval immediately following the end-Cretaceous mass extinction). At face value this hypothesis enjoys support from the crown bird fossil record, which documents the first appearances of most major crown bird lineages in the early Cenozoic—in line with a model of rapid post-extinction niche filling among surviving avian lineages. However, molecular-clock analyses have yielded strikingly variable estimates for the age of crown birds, and conflicting inferences on the impact of the end-Cretaceous mass extinction on the extant bird radiation. This uncertainty has often been ascribed to a patchy avian fossil record, but the possibility of model misspecification in molecular divergence time analyses represents an important and relatively underexplored alternative hypothesis. Here, we highlight the necessity of further developing and using models that account for coordinated variation in rates of molecular evolution across a phylogeny (e.g. molecular early bursts) as a means of assessing support for a rapid post-Cretaceous radiation of crown birds. We discuss how relationships between life-history and substitution rates can mislead divergence time studies that do not account for directional changes in substitution rates over time, and suggest that these effects might have caused some of the variation in existing molecular date estimates for birds. We suggest multiple paths forward that could help resolve this and similar conflicts within other major eukaryotic clades.


Author(s):  
Daniel J. Field ◽  
Jacob S. Berv ◽  
Allison Y. Hsiang ◽  
Robert Lanfear ◽  
Michael J. Landis ◽  
...  

Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary history (specifically, the interval immediately following the end-Cretaceous mass extinction). At face value this hypothesis enjoys support from the crown bird fossil record, which documents the first appearances of most major crown bird lineages in the early Cenozoic—in line with a model of rapid post-extinction niche filling among surviving avian lineages. However, molecular-clock analyses have yielded strikingly variable estimates for the age of crown birds, and conflicting inferences on the impact of the end-Cretaceous mass extinction on the extant bird radiation. This uncertainty has often been ascribed to a patchy avian fossil record, but the possibility of model misspecification in molecular divergence time analyses represents an important and relatively underexplored alternative hypothesis. Here, we highlight the necessity of further developing and using models that account for coordinated variation in rates of molecular evolution across a phylogeny (e.g. molecular early bursts) as a means of assessing support for a rapid post-Cretaceous radiation of crown birds. We discuss how relationships between life-history and substitution rates can mislead divergence time studies that do not account for directional changes in substitution rates over time, and suggest that these effects might have caused some of the variation in existing molecular date estimates for birds. We suggest multiple paths forward that could help resolve this and similar conflicts within other major eukaryotic clades.


Paleobiology ◽  
2021 ◽  
pp. 1-16
Author(s):  
Neha Sharma ◽  
Subhronil Mondal ◽  
Shiladri S. Das ◽  
Kanishka Bose ◽  
Sandip Saha

Abstract Taxonomic status of several members of the family Naticidae is extremely vague because of its simple shell morphology. Conventional taxonomic classification schemes suggest that most of the morphological characters tend to be homoplastic and exhibit convergence. Such morphological convergence complicates naticid taxonomy and makes it difficult to understand the evolutionary history of this group; several unrelated taxa are often misidentified as naticids, thereby exaggerating the actual diversity of this group. Here, we employ a standard landmark-based approach to understand the pattern of morphological evolution of this family. Ordination methods such as principal components analysis and canonical variate analysis were used to create morphospaces, and disparity was quantified using variance and range. Our results reveal that when naticids are compared with their sister taxon, Ampullinidae, the two families show significant differences in their average shapes, despite their superficial resemblances. Among naticids, although the mean shapes of the individual subfamilies are different, overall, the family Naticidae has displayed extreme morphological conservatism from the Jurassic to the Holocene. Interestingly, this conservatism has been unaffected by taxonomic changes—neither the extinction of the subfamily Gyrodinae nor the appearance of the subfamily Sininae affected this morphological conservatism. Naticids have always shown strong ecological preference toward an infaunal mode of life and strict behavioral selectivity in handling and preying upon infaunal organisms, and this ecological and behavioral conservatism could have enabled them to diversify without undergoing a change in their basic Bauplan.


Paleobiology ◽  
2000 ◽  
Vol 26 (S4) ◽  
pp. 341-371 ◽  
Author(s):  
Peter J. Wagner

Tree-based paleobiological studies use inferred phylogenies as models to test hypotheses about macroevolution and the quality of the fossil record. Such studies raise two concerns. The first is how model trees might bias results. The second is testing hypotheses about parameters that affect tree inference.Bias introduced by model trees is explored for tree-based assessments of the quality of the fossil record. Several nuisance parameters affect tree-based metrics, including consistency of sampling probability, rates of speciation / extinction, patterns of speciation, applied taxonomic philosophy, and assumed taxonomy. The first two factors affect probabilistic assessments of sampling, but also can be tested and accommodated in sophisticated probability tests. However, the final three parameters (and the assumption of a correct phylogeny) do not affect probabilistic assessments.Often paleobiologists wish to test hypotheses such as rates of character change or rates of preservation. Assumptions about such parameters are necessary in simple phylogenetic methods, even if the assumptions are that rates are homogeneous or that sampling is irrelevant. Likelihood tests that evaluate phylogenies in light of stratigraphic data and / or alternative hypotheses of character evolution can reduce assumptions about unknowns by testing numerous unknowns simultaneously. Such tests have received numerous criticisms, largely based in philosophy. However, such criticisms are based on incorrect depictions of the logical structures of parsimony and likelihood, misunderstandings about when arguments are probabilistic (as opposed to Boolean), overly restrictive concepts of when data can test a hypothesis, and simply incorrect definitions of some terms.Likelihood methods can test multiparameter hypotheses about phylogeny and character evolution (i.e., rates, independence, etc.). The best hypothesis positing a single rate of independent character change (with no variation among character states) is determined for each topology. Hypotheses about rate variation among characters or across phylogeny, character independence, and different patterns of state evolution then are examined until one finds the simplest (i.e., fewest varying parameters) hypothesis that cannot be rejected given knowledge of a more complicated hypothesis. This is repeated for alternative topologies. An example is presented using hyaenids. Two trees are contrasted, one of which requires the minimum necessary steps and the other of which requires at least seven additional steps. Given either tree, likelihood rejects fewer than three general rates of character change and also rejects the hypothesis of independence among the characters. However, hypotheses of changes in rates across the tree do not add substantially to the tree likelihood. The likelihoods of the trees given stratigraphic data also are determined. Both morphologic and stratigraphic data suggest that the multiparameter hypothesis including the parsimony tree is significantly less likely than the multiparameter hypothesis including a different tree.


Sign in / Sign up

Export Citation Format

Share Document