scholarly journals Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit and Myonuclear- and Mitochondrial-Domains

2018 ◽  
Author(s):  
Mahir Mohiuddin ◽  
Nan Hee Lee ◽  
June Young Moon ◽  
Woojin M. Han ◽  
Shannon E. Anderson ◽  
...  

AbstractCritical limb ischemia, the most severe form of peripheral artery disease, leads to extensive damage and alterations in skeletal muscle homeostasis. Although recent developments towards revascularization therapies have been introduced, there has been limited research into treatments for ischemic myopathy. To elucidate the regenerative mechanism of the muscle stem cell and its niche components in response to ischemic insults, we explored interactions between the vasculature, motor neuron, muscle fiber, and the muscle stem cell. We first investigated changes in the neuromuscular junction and motor neuron innervation following a surgical hindlimb ischemia model of critical limb ischemia in mice. Along with previous findings that support remodeling of the neuromuscular junction, we report that ischemic injury also causes significant alterations to the myofiber through a muscle stem cell-mediated increase of myonuclei number per fiber, a concomitant decrease in myonuclear domain size, and an increase in relative mitochondrial content per myonucleus. These results indicate that as a regenerative response to critical limb ischemia, myofibers exhibit myonuclear expansion to allow enhanced transcriptional support and an increase in mitochondrial content for bioenergetic need of the energy-demanding tissue regeneration.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wenxuan Liu ◽  
Alanna Klose ◽  
Sophie Forman ◽  
Nicole D Paris ◽  
Lan Wei-LaPierre ◽  
...  

Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Mahir Mohiuddin ◽  
Nan Hee Lee ◽  
Austin Moon ◽  
Woojin M Han ◽  
Shannon E Anderson ◽  
...  

2012 ◽  
Vol 76 (7) ◽  
pp. 1750-1760 ◽  
Author(s):  
Han Cheol Lee ◽  
Sung Gyu An ◽  
Hye Won Lee ◽  
Jin-Sup Park ◽  
Kwang Soo Cha ◽  
...  

2018 ◽  
Author(s):  
Mohsen Afshar Bakooshli ◽  
Ethan S Lippmann ◽  
Ben Mulcahy ◽  
Nisha R Iyer ◽  
Christine T Nguyen ◽  
...  

SummaryTwo-dimensional (2D) human skeletal muscle fiber cultures are ill equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections within two weeks. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium transient imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-culture. This demonstrates that the 3D co-culture system supports a developmental shift from the embryonic to adult form of the receptor that does not occur in 2D co-culture. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. This work delivers a simple, reproducible, and adaptable method to model and evaluate adult human NMJ de novo development and disease in culture.


2019 ◽  
Vol 33 (7) ◽  
pp. 8094-8109 ◽  
Author(s):  
Shimpei Hori ◽  
Yosuke Hiramuki ◽  
Daigo Nishimura ◽  
Fuminori Sato ◽  
Atsuko Sehara-Fujisawa

2009 ◽  
Vol 187 (7) ◽  
pp. 941-943 ◽  
Author(s):  
Andrew B. Lassar

In this issue, Gillespie et al. (Gillespie et al. 2009. J. Cell Biol. doi:10.1083/jcb.200907037) demonstrate that the mitogen-activated protein kinase isoform p38-γ plays a crucial role in blocking the premature differentiation of satellite cells, a skeletal muscle stem cell population. p38-γ puts the brakes on skeletal muscle differentiation by promoting the association of the transcription factor MyoD with the histone methyltransferase, KMT1A, which act together in a complex to repress the premature expression of the gene encoding the myogenic transcription factor Myogenin.


2013 ◽  
Vol 144 (5) ◽  
pp. S-886
Author(s):  
Johanna G. Palmadottir ◽  
Francisco A. Sylvester ◽  
Morgan E. Carlson ◽  
Andrew Draghi

Sign in / Sign up

Export Citation Format

Share Document