scholarly journals Visualization and regulation of translocons inYersiniatype III protein secretion machines during host cell infection

2018 ◽  
Author(s):  
Theresa Nauth ◽  
Franziska Huschka ◽  
Michaela Schweizer ◽  
Jens B. Bosse ◽  
Andreas Diepold ◽  
...  

AbstractType III secretion systems (T3SSs) are essential virulence factors of numerous bacterial pathogens. Upon host cell contact the T3SS machinery - also named injectisome - assembles a pore complex/translocon within host cell membranes that serves as an entry gate for the bacterial effectors. Whether and how translocons are physically connected to injectisome needles, whether their phenotype is related to the level of effector translocation and which target cell factors trigger their assembly have remained unclear. We employed the superresolution fluorescence microscopy techniques Stimulated Emission Depletion (STED) and Structured Illumination Microscopy (SIM) as well as immunogold electron microscopy to visualizeY. enterocoliticatranslocons during infection of different target cell types. Thereby we were able to resolve translocon and needle complex proteins within the same injectisomes and demonstrate that these fully assembled injectisomes are generated in a prevacuole, a PI(4,5)P2 enriched host cell compartment inaccessible to large extracellular proteins like antibodies. Furthermore, the putatively operable translocons were produced by the yersiniae to a much larger degree in macrophages (up to 25% of bacteria) than in HeLa cells (2% of bacteria). However, when the Rho GTPase Rac1 was activated in the HeLa cells, uptake of the yersiniae into the prevacuole, translocon formation and effector translocation were strongly enhanced reaching the same levels as in macrophages. Our findings indicate that operable T3SS translocons can be visualized as part of fully assembled injectisomes with superresolution fluorescence microscopy techniques. By using this technology we provide novel information about the spatiotemporal organisation of T3SS translocons and their regulation by host cell factors.Author SummaryMany human, animal and plant pathogenic bacteria employ a molecular machine termed injectisome to inject their toxins into host cells. Because injectisomes are crucial for these bacteria’s infectious potential they have been considered as targets for antiinfective drugs. Injectisomes are highly similar between the different bacterial pathogens and most of their overall structure is well established at the molecular level. However, only little information is available for a central part of the injectisome named the translocon. This pore-like assembly integrates into host cell membranes and thereby serves as an entry gate for the bacterial toxins. We used state of the art fluorescence microscopy to watch translocons of the diarrheagenic pathogenYersinia enterocoliticaduring infection of human host cells. Thereby we could for the first time - with fluorescence microscopy - visualize translocons connected to other parts of the injectisome. Furthermore, because translocons mark functional injectisomes we could obtain evidence that injectisomes only become active when the bacteria are almost completely enclosed by host cells. These findings provide a novel view on the organisation and regulation of bacterial translocons and may thus open up new strategies to block the function of infectious bacteria.

2000 ◽  
Vol 68 (7) ◽  
pp. 4344-4348 ◽  
Author(s):  
Annick Gauthier ◽  
Myriam de Grado ◽  
B. Brett Finlay

ABSTRACT Enteropathogenic Escherichia coli (EPEC) inserts its receptor for intimate adherence (Tir) into host cell membranes by using a type III secretion system. Detergents are frequently used to fractionate infected host cells to investigate bacterial protein delivery into mammalian cells. In this study, we found that the Triton X-100-soluble membrane fraction from EPEC-infected HeLa cells was contaminated with bacterial proteins. We therefore applied a mechanical method of cell lysis and ultracentrifugation to fractionate infected HeLa cells to investigate the biology and biochemistry of Tir delivery and translocation. This method demonstrates that the translocation of Tir into the host cell membrane requires its transmembrane domains, but not tyrosine phosphorylation or binding to Tir's ligand, intimin.


2021 ◽  
Author(s):  
Victor K. Outlaw ◽  
Ross W. Cheloha ◽  
Eric M. Jurgens ◽  
Francesca T. Bovier ◽  
Yun Zhu ◽  
...  

ABSTRACTThe lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane, and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.


2021 ◽  
Vol 120 (3) ◽  
pp. 321a
Author(s):  
Rui Su ◽  
Jin Zeng ◽  
Sathish Thiyagarajan ◽  
Ben O'Shaughnessy

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Anthony S. Piro ◽  
Dulcemaria Hernandez ◽  
Sarah Luoma ◽  
Eric M. Feeley ◽  
Ryan Finethy ◽  
...  

ABSTRACT Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment. IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future. Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


2004 ◽  
Vol 49 (3) ◽  
pp. 685-704 ◽  
Author(s):  
Leigh A. Knodler ◽  
Bruce A. Vallance ◽  
Michael Hensel ◽  
Daniela Jäckel ◽  
B. Brett Finlay ◽  
...  

2011 ◽  
Vol 7 (9) ◽  
pp. e1002224 ◽  
Author(s):  
Stefanie Graewe ◽  
Kathleen E. Rankin ◽  
Christine Lehmann ◽  
Christina Deschermeier ◽  
Leonie Hecht ◽  
...  

1989 ◽  
Vol 9 ◽  
pp. S74
Author(s):  
P. Pontisso ◽  
G. Morsica ◽  
M.G. Ruvoletto ◽  
D. Cavalletto ◽  
L. Chemello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document