scholarly journals Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein

2018 ◽  
Author(s):  
Karen Voelkel-Meiman ◽  
Shun-Yun Cheng ◽  
Melanie Parziale ◽  
Savannah J. Morehouse ◽  
Arden Feil ◽  
...  

AbstractAccurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes, which is often associated with the meiosis-specific MutSγ complex. The recombination intermediates that give rise to MutSγ interhomolog crossovers are embedded within a hallmark meiotic prophase structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known central region building blocks of the budding yeast SC, the Zip1 protein is unique for its SC-independent role in promoting MutSγ crossovers. Here we report that adjacent regions within Zip1’s unstructured N terminus encompass its crossover and SC assembly functions. We previously showed that deletion of Zip1 residues 21-163 abolishes tripartite SC assembly and prevents the robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2-9 or 10-14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2-9 or 2-14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15-20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and robust Ecm11 SUMOylation. These results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossover recombination and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors in close proximity to one another.

Author(s):  
Jennifer C. Fung ◽  
Bethe A. Scalettar ◽  
David A. Agard ◽  
John W. Sedat

The synaptonemal complex (SC) is a structure involved in the synapsis of homologous chromosomes during the prophase I stage of meiosis. Although the exact function of the complex is unknown, it has been suggested that one possible role might be to promote recombination by ensuring close synapsis of the homologous chromosomes. In addition, it is thought that the SC may also be required to convert the resulting recombination events into functional chiasmata to provide for proper chromosome segregation at the end of the first stage of meiosis.The SC structure itself is highly conserved across a variety of species. The organization of the SC is tripartite consisting of lateral, central and transverse elements. Two-dimensional cytological observations have been made to characterize the general features of these SC components. The lateral elements are 300 - 500 Å wide proteinaceous structures which flank the synapsed regions of the chromosome bivalent. Between the two lateral elements is a central region containing the central element commonly characterized as a less dense amorphous structure.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Saravanapriah Nadarajan ◽  
Talley J Lambert ◽  
Elisabeth Altendorfer ◽  
Jinmin Gao ◽  
Michael D Blower ◽  
...  

The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of recombination-initiating double-strand breaks (DSBs) via a feedback loop triggered by crossover designation in C. elegans. We found that SYP-4 is phosphorylated dependent on Polo-like kinases PLK-1/2. SYP-4 phosphorylation depends on DSB formation and crossover designation, is required for stabilizing the SC in pachytene by switching the central region of the SC from a more dynamic to a less dynamic state, and negatively regulates DSB formation. We propose a model in which Polo-like kinases recognize crossover designation and phosphorylate SYP-4 thereby stabilizing the SC and making chromosomes less permissive for further DSB formation.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. e1002088 ◽  
Author(s):  
Sabine Schramm ◽  
Johanna Fraune ◽  
Ronald Naumann ◽  
Abrahan Hernandez-Hernandez ◽  
Christer Höög ◽  
...  

PLoS Genetics ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. e1008201 ◽  
Author(s):  
Karen Voelkel-Meiman ◽  
Shun-Yun Cheng ◽  
Melanie Parziale ◽  
Savannah J. Morehouse ◽  
Arden Feil ◽  
...  

2017 ◽  
Author(s):  
Aya Sato-Carlton ◽  
Chihiro Nakamura-Tabuchi ◽  
Stephane Kazuki Chartrand ◽  
Tomoki Uchino ◽  
Peter Mark Carlton

AbstractChromosomes that have undergone crossing-over in meiotic prophase must maintain sister chromatid cohesion somewhere along their length between the first and second meiotic divisions. While many eukaryotes use the centromere as a site to maintain cohesion, the holocentric organism C. elegans instead creates two chromosome domains of unequal length termed the short arm and long arm, which become the first and second site of cohesion loss at meiosis I and II. The mechanisms that confer distinct functions to the short and long arm domains remain poorly understood. Here, we show that phosphorylation of the synaptonemal complex protein SYP-1 is required to create these domains. Once crossovers are made, phosphorylated SYP-1 and PLK-2 become cooperatively confined to short arms and guide phosphorylated histone H3 and the chromosomal passenger complex to the site of meiosis I cohesion loss. Our results show that PLK-2 and phosphorylated SYP-1 ensure creation of the short arm subdomain, promoting disjunction of chromosomes in meiosis I.


2015 ◽  
Vol 71 (9) ◽  
pp. 1131-1134 ◽  
Author(s):  
Hyun Ho Park

The synaptonemal complex is a meiosis-specific complex structure formed at the synapse of homologous chromosomes to hold them together during meiosis. Synaptonemal complex protein 1 (SYCP1) is one of the components of the syneptonemal complex. In this study, the short form of the coiled-coil domain of SYCP1 was overexpressed inEscherichia coliwith an engineered C-terminal His tag. The short form of the coiled-coil domain of SYCP1 was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 3.0 Å from a crystal belonging to space groupI4, with unit-cell parametersa= 41.95,b= 41.95,c= 318.78 Å. The asymmetric unit was estimated to contain two molecules.


2017 ◽  
Vol 8 (7) ◽  
pp. 538-543 ◽  
Author(s):  
Jianrong Feng ◽  
Shijuan Fu ◽  
Xuan Cao ◽  
Hao Wu ◽  
Jing Lu ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98712 ◽  
Author(s):  
Hanbyoul Cho ◽  
Kyung Hee Noh ◽  
Joon-Yong Chung ◽  
Mikiko Takikita ◽  
Eun Joo Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document