scholarly journals Efficiency of island homing by sea turtles under multimodal navigating strategies

2018 ◽  
Author(s):  
K. J. Painter ◽  
A. Z. Plochocka

AbstractA dot in the vastness of the Atlantic, Ascension Island remains a lifelong goal for the green sea turtles that hatched there, returning as adults every three or four years to nest. This navigating puzzle was brought to the scientific community’s attention by Charles Darwin and remains a topic of considerable speculation. Various cues have been suggested, with orientation to geomagnetic field elements and following odour plumes to their island source among the most compelling. Via a comprehensivein silicoinvestigation we test the hypothesis that multimodal cue following, in which turtles utilise multiple guidance cues, is the most effective strategy. Specifically, we combine agent-based and continuous-level modelling to simulate displaced virtual turtles as they attempt to return to the island. Our analysis shows how population homing efficiency improves as the number of utilised cues is increased, even under “extreme” scenarios where the overall strength of navigating information decreases. Beyond the paradigm case of green turtles returning to Ascension Island, we believe this could commonly apply throughout animal navigation.

2018 ◽  
Vol 30 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Duane T. March ◽  
Kimberly Vinette-Herrin ◽  
Andrew Peters ◽  
Ellen Ariel ◽  
David Blyde ◽  
...  

To improve understanding of pathophysiologic processes occurring in green sea turtles ( Chelonia mydas) stranded along the east coast of Australia, we retrospectively examined the hematologic and biochemical blood parameters of 127 green turtles admitted to 2 rehabilitation facilities, Dolphin Marine Magic (DMM) and Taronga Zoo (TZ), between 2002 and 2016. The predominant size class presented was small immature animals (SIM), comprising 88% and 69% of admissions to DMM and TZ, respectively. Significant differences in blood profiles were noted between facility, size, and outcome. Elevated levels of aspartate aminotransferase (AST) and heterophils were poor prognostic indicators in animals from TZ, but not DMM. SIM animals at both institutions had lower protein levels than large older (LO) animals. SIM animals at DMM also had lower hematocrit and monocyte concentration; SIM animals at TZ had lower heterophil counts. Urea was measured for 27 SIM animals from TZ, but the urea-to-uric acid ratio was not prognostically useful. Strong correlations were seen between AST and glutamate dehydrogenase (GDH; r = 0.68) and uric acid and bile acids ( r = 0.72) in the 45 SIM animals from DMM in which additional analytes were measured. χ2 contingency tests showed that the most recently published reference intervals were not prognostically useful. A paired t-test showed that protein levels rose and heterophil numbers fell in the 15 SIM animals from TZ during the rehabilitation process. Our results indicate that further work is required to identify reliable prognostic biomarkers for green turtles.


2019 ◽  
Vol 99 (8) ◽  
pp. 1879-1887 ◽  
Author(s):  
Silmara Rossi ◽  
Angélica María Sánchez-Sarmiento ◽  
Robson Guimarães dos Santos ◽  
Roberta Ramblas Zamana ◽  
Fabiola Eloisa Setim Prioste ◽  
...  

AbstractFibropapillomatosis (FP) can be an important conservation threat to green sea turtles (Chelonia mydas) due to its widespread distribution and complex aetiology. Thus, understanding the impacts of FP in sea turtle populations is a research priority towards conservation efforts. The body condition index (BCI), based on straight carapace length (SCL) and body mass (BM), is an accurate indicator of body-nutritional condition that can be used in routine green turtle health evaluations. This study aimed to compare BCI in FP-free (N = 369) and FP-affected (N = 518) green turtles from Brazilian feeding areas. Body condition indices were evaluated in terms of the South-west Atlantic Fibropapillomatosis Score – FPSSWA (mild, moderate and severe), study sites (five Brazilian states), origin (intentional capture, fishery, stranding and afloat) and sex (when known). Curved and straight carapace lengths, and body mass were recorded in order to calculate BCI. Statistical analysis revealed significant differences in BCI among green turtles from different study areas (P = 0.02), and lower BCI values in FP-free than in FP-positive individuals (P < 0.0001). With regards to origin, the highest BCI was found in the intentional capture group (N = 245; 1.47 ± 0.16), followed by fishery (N = 180; 1.46 ± 0.20). Analysis according to sex revealed a higher mean BCI among females than males (P < 0.017). This study provides relevant data on the health and nutritional status of green turtles along the Brazilian coast, in important feeding areas for this species.


2016 ◽  
Vol 97 (6) ◽  
pp. 1233-1240 ◽  
Author(s):  
Nathan J. Robinson ◽  
Eric A. Lazo-Wasem ◽  
Frank V. Paladino ◽  
John D. Zardus ◽  
Theodora Pinou

Sea turtles host a diverse array of epibionts, yet it is not well understood what factors influence epibiont community composition. To test whether epibiont communities of sea turtles are influenced by the hosts’ nesting or foraging habitats, we characterized the epibiota of leatherback, olive ridley and green turtles nesting at a single location on the Pacific coast of Costa Rica. We also compared the epibiota of these turtles to conspecific populations nesting elsewhere in the East Pacific. If epibiont communities are influenced by nesting habitats, we predicted that sympatrically nesting turtles would have comparable epibiont taxa. Alternatively, if epibiont communities are influenced by foraging habitats, we predicted the diversity of epibiont taxa should reflect the type and diversity of the hosts’ foraging habitats. We identified 18 epibiont taxa from 18 leatherback, 19 olive ridley and six green turtles. Epibiont diversity was low on leatherbacks (four taxa), but higher for olive ridley and green turtles (12 and nine epibiont taxa respectively). The epibiont communities of olive ridley and green turtles were not statistically different, but both were different from leatherbacks. In addition, conspecific sea turtles from other nesting locations hosted more similar epibiont communities than sympatrically nesting, non-conspecifics. We conclude that epibiont diversity of nesting sea turtles is partially linked to the diversity of their foraging habitats. We also conclude that the surface properties of the skin and carapace of these turtles may contribute to the uniqueness of leatherback turtle epibiont communities and the similarities between olive ridley and green turtle epibiont communities.


2002 ◽  
Vol 80 (7) ◽  
pp. 1299-1302 ◽  
Author(s):  
Graeme C Hays ◽  
Annette C Broderick ◽  
Fiona Glen ◽  
Brendan J Godley

Female green sea turtles (Chelonia mydas) nesting at Ascension Island (7°57'S, 14°22'W) in the middle of the Atlantic Ocean had a mean body mass (post oviposition) of 166.3 kg (range 107.5–243.5 kg, n = 119). Individuals lost mass slowly during the nesting season (mean mass loss 0.22 kg·d–1, n = 14 individuals weighed more than once). Gut-content analysis and behavioural observations indicated a lack of feeding. Females of equivalent-sized pinniped species that also do not feed while reproducing (nursing pups) on islands lose mass about 17 times faster. This comparatively low rate of mass loss by green turtles probably reflects their ectothermic nature and, consequently, their low metabolic rate. We estimate that a female turtle would lose only 19% of her body mass during the 143-day, 4400-km round trip from Brazil if she did not eat, laid 3 clutches of eggs, and lost 0.22 kg·d–1.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liberty L. Boyd ◽  
John D. Zardus ◽  
Courtney M. Knauer ◽  
Lawrence D. Wood

Epibionts are organisms that utilize the exterior of other organisms as a living substratum. Many affiliate opportunistically with hosts of different species, but others specialize on particular hosts as obligate associates. We investigated a case of apparent host specificity between two barnacles that are epizoites of sea turtles and illuminate some ecological considerations that may shape their host relationships. The barnacles Chelonibia testudinaria and Chelonibia caretta, though roughly similar in appearance, are separable by distinctions in morphology, genotype, and lifestyle. However, though each is known to colonize both green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) sea turtles, C. testudinaria is &gt;5 times more common on greens, while C. caretta is &gt;300 times more common on hawksbills. Two competing explanations for this asymmetry in barnacle incidence are either that the species’ larvae are spatially segregated in mutually exclusive host-encounter zones or their distributions overlap and the larvae behaviorally select their hosts from a common pool. We indirectly tested the latter by documenting the occurrence of adults of both barnacle species in two locations (SE Florida and Nose Be, Madagascar) where both turtle species co-mingle. For green and hawksbill turtles in both locations (Florida: n = 32 and n = 275, respectively; Madagascar: n = 32 and n = 125, respectively), we found that C. testudinaria occurred on green turtles only (percent occurrence – FL: 38.1%; MD: 6.3%), whereas the barnacle C. caretta was exclusively found on hawksbill turtles (FL: 82.2%; MD: 27.5%). These results support the hypothesis that the larvae of these barnacles differentially select host species from a shared supply. Physio-biochemical differences in host shell material, conspecific chemical cues, external microbial biofilms, and other surface signals may be salient factors in larval selectivity. Alternatively, barnacle presence may vary by host micro-environment. Dissimilarities in scute structure and shell growth between hawksbill and green turtles may promote critical differences in attachment modes observed between these barnacles. In understanding the co-evolution of barnacles and hosts it is key to consider the ecologies of both hosts and epibionts in interpreting associations of chance, choice, and dependence. Further studies are necessary to investigate the population status and settlement spectrum of barnacles inhabiting sea turtles.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167632 ◽  
Author(s):  
Silmara Rossi ◽  
Angélica María Sánchez-Sarmiento ◽  
Ralph Eric Thijl Vanstreels ◽  
Robson Guimarães dos Santos ◽  
Fabiola Eloisa Setim Prioste ◽  
...  

2021 ◽  
pp. 105437
Author(s):  
Eduardo H.S.M. Lima ◽  
Danielle Rodrigues Awabdi ◽  
Maria Thereza D. Melo ◽  
Bruno Giffoni ◽  
Leandro Bugoni

Sign in / Sign up

Export Citation Format

Share Document