scholarly journals Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention

2018 ◽  
Author(s):  
Joshua Obermayer ◽  
Antonio Luchicchi ◽  
Sybren F. de Kloet ◽  
Huub Terra ◽  
Bastiaan Bruinsma ◽  
...  

SummaryNeocortical choline acetyltransferase (ChAT)-expressing interneurons are a subclass of vasoactive intestinal peptide (ChAT-VIP) neurons of which circuit and behavioural function are unknown. It has also not been addressed whether these neurons release both neurotransmitters acetylcholine (ACh) and GABA. Here, we find that in the medial prefrontal cortex (mPFC), ChAT-VIP neurons directly excite interneurons in layers (L)1-3 as well as pyramidal neurons in L2/3 and L6 by fast cholinergic transmission. Dual recordings of presynaptic ChAT-VIP neurons and postsynaptic L1 interneurons show fast nicotinic receptor currents strictly time-locked to single presynaptic action potentials. A fraction (10-20%) of postsynaptic neurons that received cholinergic input from ChAT-VIP interneurons also received GABAergic input from these neurons. In contrast to regular VIP interneurons, ChAT-VIP neurons did not disinhibit pyramidal neurons, but instead depolarized fast spiking and low threshold spiking interneurons. Finally, we find that ChAT-VIP neurons control attention behaviour distinctly from basal forebrain ACh inputs to mPFC. Our findings show that ChAT-VIP neurons are a local source of cortical ACh, that directly excite pyramidal and interneurons throughout cortical layers.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joshua Obermayer ◽  
Antonio Luchicchi ◽  
Tim S. Heistek ◽  
Sybren F. de Kloet ◽  
Huub Terra ◽  
...  

AbstractNeocortical choline acetyltransferase (ChAT)-expressing interneurons are a subclass of vasoactive intestinal peptide (ChAT-VIP) neurons of which circuit and behavioural function are unknown. Here, we show that ChAT-VIP neurons directly excite neighbouring neurons in several layers through fast synaptic transmission of acetylcholine (ACh) in rodent medial prefrontal cortex (mPFC). Both interneurons in layers (L)1–3 as well as pyramidal neurons in L2/3 and L6 receive direct inputs from ChAT-VIP neurons mediated by fast cholinergic transmission. A fraction (10–20%) of postsynaptic neurons that received cholinergic input from ChAT-VIP interneurons also received GABAergic input from these neurons. In contrast to regular VIP interneurons, ChAT-VIP neurons did not disinhibit pyramidal neurons. Finally, we show that activity of these neurons is relevant for behaviour and they control attention behaviour distinctly from basal forebrain ACh inputs. Thus, ChAT-VIP neurons are a local source of cortical ACh that directly excite neurons throughout cortical layers and contribute to attention.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Joshua Obermayer ◽  
Antonio Luchicchi ◽  
Tim S. Heistek ◽  
Sybren F. de Kloet ◽  
Huub Terra ◽  
...  

2020 ◽  
Author(s):  
Andreas Ritzau-Jost ◽  
Timur Tsintsadze ◽  
Martin Krueger ◽  
Jonas Ader ◽  
Ingo Bechmann ◽  
...  

SUMMARYPresynaptic action potential spikes control neurotransmitter release and thus interneuronal communication. However, the properties and the dynamics of presynaptic spikes in the neocortex remain enigmatic because boutons in the neocortex are small and direct patch-clamp recordings have not been performed. Here we report direct recordings from boutons of neocortical pyramidal neurons and interneurons. Our data reveal rapid and large presynaptic action potentials in layer 5 neurons and fast-spiking interneurons reliably propagating into axon collaterals. For in-depth analyses we validate boutons of mature cultured neurons as models for excitatory neocortical boutons, demonstrating that the presynaptic spike amplitude was unaffected by potassium channels, homeostatic long-term plasticity, and high-frequency firing. In contrast to the stable amplitude, presynaptic spikes profoundly broadened for example during high-frequency firing in layer 5 pyramidal neurons but not in fast-spiking interneurons. Thus, our data demonstrate large presynaptic spikes and fundamental differences between excitatory and inhibitory boutons in the neocortex.


1997 ◽  
Vol 77 (5) ◽  
pp. 2466-2483 ◽  
Author(s):  
Peter C. Schwindt ◽  
Wayne E. Crill

Schwindt, Peter C. and Wayne E. Crill. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J. Neurophysiol. 77: 2466–2483, 1997. Iontophoresis of glutamate at sites on the apical dendrite 278–555 μm from the somata of rat neocortical pyramidal neurons evoked low-threshold, small, slow spikes and/or large, fast spikes in 71% of recorded cells. The amplitude of the small, slow spikes recorded at the soma averaged 9.1 mV, and their apparent threshold was <10 mV positive to resting potential. Both their amplitude and their apparent threshold decreased as the iontophoretic site was moved farther from the soma. These spikes were not abolished by somatic hyperpolarization. When the somata of cells displaying these small spikes were voltage clamped at membrane potentials that prevented somatic or axonic firing, corresponding current spikes could be evoked all-or-none by dendritic depolarization, indicating that the small, slow spikes arose in the dendrite. Similar responses were not observed during somatic depolarization evoked by current pulses or glutamate iontophoresis. These small, slow spikes were abolished by blocking voltage-gated Ca2+ channels but not by blocking Na+ channels or N-methyl-d-aspartate receptors. We conclude that these Ca2+ spikes occurred in a spatially restricted region of the dendrite and were not actively propagated to the soma. In the presence of 10 mM tetraethylammonium chloride, the amplitudes of the iontophoretically evoked Ca2+ spikes were large, similar to those of the Ca2+ spikes evoked by somatic current injection, but their apparent thresholds were 63% lower. We conclude that dendritic K+ channels normally prevent the active propagation of Ca2+ spikes along the dendrite. In 36% of recorded cells dendritic glutamate iontophoresis evoked a Na+ spike with an apparent threshold 63% lower than those evoked by somatic current injection or somatic glutamate iontophoresis. Blockade of these low-threshold Na+ spikes by pharmacological or electrophysiological means often revealed underlying small dendritic Ca2+ spikes. When cells displaying the low-threshold Na+ spikes were voltage clamped at membrane potentials that prevented firing of the soma or axon, corresponding tetrodotoxin-sensitive current spikes could be evoked all-or-none by dendritic depolarization. We conclude that these low-threshold Na+ spikes were initiated in the dendrite, probably by local Ca2+ spikes, and subsequently propagated actively to the soma. Most cells displaying dendritic Na+ spikes fired multiple bursts of action potentials during tonic dendritic depolarization, whereas somatic depolarization of the same cells evoked only regular firing. We discuss the implications of dendritic Ca2+ and Na+ spikes for synaptic integration and neural input-output relations.


2007 ◽  
Vol 98 (5) ◽  
pp. 2517-2524 ◽  
Author(s):  
Fouad Lemtiri-Chlieh ◽  
Eric S. Levine

In layer 2/3 of neocortex, brief trains of action potentials in pyramidal neurons (PNs) induce the mobilization of endogenous cannabinoids (eCBs), resulting in a depression of GABA release from the terminals of inhibitory interneurons (INs). This depolarization-induced suppression of inhibition (DSI) is mediated by activation of the type 1 cannabinoid receptor (CB1) on presynaptic terminals of a subset of INs. However, it is not clear whether CB1 receptors are also expressed at synapses between INs, and whether INs can release eCBs in response to depolarization. In the present studies, brain slices containing somatosensory cortex were prepared from 14- to 21-day-old CD-1 mice. Whole cell recordings were obtained from layer 2/3 PNs and from INs classified as regular spiking nonpyramidal, irregular spiking, or fast spiking. For all three classes of INs, the cannabinoid agonist WIN55,212-2 suppressed inhibitory synaptic activity, similar to the effect seen in PNs. In addition, trains of action potentials in PNs resulted in significant DSI. In INs, however, DSI was not seen in any cell type, even with prolonged high-frequency spike trains that produced calcium increases comparable to that seen with DSI induction in PNs. In addition, blocking eCB reuptake with AM404, which enhanced DSI in PNs, failed to unmask any DSI in INs. Thus the lack of DSI in INs does not appear to be due to an insufficient increase in intracellular calcium or enhanced reuptake. These results suggest that layer 2/3 INs receive CB1-expressing inhibitory inputs, but that eCBs are not released by these INs.


2014 ◽  
Vol 112 (6) ◽  
pp. 1277-1290 ◽  
Author(s):  
Fu-Wen Zhou ◽  
Steven N. Roper

Aberrant neural connections are regarded as a principal factor contributing to epileptogenesis. This study examined chemical and electrical connections between fast-spiking (FS), parvalbumin (PV)-immunoreactive (FS-PV) interneurons and regular-spiking (RS) neurons (pyramidal neurons or spiny stellate neurons) in a rat model of prenatal irradiation-induced cortical dysplasia. Presynaptic action potentials were evoked by current injection and the elicited unitary inhibitory or excitatory postsynaptic potentials (uIPSPs or uEPSPs) were recorded in the postsynaptic cell. In dysplastic cortex, connection rates between presynaptic FS-PV interneurons and postsynaptic RS neurons and FS-PV interneurons, and uIPSP amplitudes were significantly smaller than controls, but both failure rates and coefficient of variation of uIPSP amplitudes were larger than controls. In contrast, connection rates from RS neurons to FS-PV interneurons and uEPSPs amplitude were similar in the two groups. Assessment of the paired pulse ratio showed a significant decrease in synaptic release probability at FS-PV interneuronal terminals, and the density of terminal boutons on axons of biocytin-filled FS-PV interneurons was also decreased, suggesting presynaptic dysfunction in chemical synapses formed by FS-PV interneurons. Electrical connections were observed between FS-PV interneurons, and the connection rates and coupling coefficients were smaller in dysplastic cortex than controls. In dysplastic cortex, we found a reduced synaptic efficiency for uIPSPs originating from FS-PV interneurons regardless of the type of target cell, and impaired electrical connections between FS-PV interneurons. This expands our understanding of the fundamental impairment of inhibition in this model and may have relevance for certain types of human cortical dysplasia.


1995 ◽  
Vol 73 (6) ◽  
pp. 2553-2557 ◽  
Author(s):  
B. R. Christie ◽  
L. S. Eliot ◽  
K. Ito ◽  
H. Miyakawa ◽  
D. Johnston

1. Intracellular recordings, in conjunction with fura-2 fluorescence imaging, were used to evaluate the contribution of the different Ca2+ channel subtypes to the Ca2+ influx induced by back-propagating trains of action potentials. High-threshold channels contributed mainly to Ca2+ influx in pyramidal cell somata and proximal dendrites, whereas low-threshold and other Ni(2+)-sensitive channels played a greater role in more distal dendritic signaling. These data suggest that the different Ca2+ channel types participate in distinct physiological functions; low-threshold channels likely play a greater role in dendritic integration, whereas high-threshold channels are more important for somatic Ca(2+)-dependent processes.


1996 ◽  
Vol 75 (2) ◽  
pp. 931-939 ◽  
Author(s):  
J. G. Tasker ◽  
N. W. Hoffman ◽  
Y. I. Kim ◽  
R. S. Fisher ◽  
W. J. Peacock ◽  
...  

1. The intrinsic electrical properties of human neocortical neurons were studied with current-clamp and single-electrode voltage-clamp techniques in slices obtained from children, aged 3 mo to 15 yr, undergoing surgical treatment of intractable epilepsy. Neocortical samples were classified as most or least abnormal based on clinical data. Recorded neurons were labeled with biocytin for correlation of electrical properties with morphological characteristics and laminar position. All recorded neurons were divided into three cell types--fast-spiking, low-threshold spiking (LTS) and non-LTS cells--on the basis of their electrical characteristics. 2. Fast-spiking cells generated brief, rapidly repolarizing action potentials. Most of these cells showed only weak spike-frequency adaptation. Fast-spiking cells labeled with biocytin were aspiny or sparsely spiny nonpyramidal neurons located in cortical layers 2-4. 3. LTS cells generated Ca(2+)-dependent low-threshold potentials and were the most numerous of the three cell types. Their Na(+)-dependent action potentials were broader than those of fast-spiking cells and showed marked spike-frequency adaptation. The size of low-threshold Ca2+ potentials and currents varied across cells, but they never supported more than two or, occasionally, three fast action potentials. LTS cells were pyramidal neurons located throughout cortical layers 2-6. Unlike the bursting neocortical cells described in lower mammals, LTS neurons in neocortex from children failed to generate bursts of inactivating Na+ action potentials. 4. Non-LTS cells also had relatively broad Na(+)-dependent action potentials and showed spike-frequency adaptation, but they did not generate detectable low-threshold potentials or currents. Non-LTS cells were also pyramidal neurons located throughout layers 2-6. 5. The electrical properties of cells from different age groups (< or = 1, 2-8, and 9-15 yr) and from most-abnormal and least-abnormal tissue samples were compared. A statistically significant trend toward a lower input resistance, a faster membrane time constant, and a decreased spike duration was observed with increasing age. There were no significant differences between the electrical properties of cells from the most-abnormal tissue and cells from the least-abnormal tissue. 6. These data indicate that the intrinsic electrical properties of neocortical neurons from children vary according to cell morphology and change with increasing age, as has been observed in rodent and feline neocortical neurons. No obvious evidence of epileptogenicity was detected in the intrinsic electrical properties of any of the neurons studied.


Sign in / Sign up

Export Citation Format

Share Document