scholarly journals Rootstock effects on scion phenotypes in a ‘Chambourcin’ experimental vineyard

2018 ◽  
Author(s):  
Zoë Migicovsky ◽  
Zachary N. Harris ◽  
Laura L. Klein ◽  
Mao Li ◽  
Adam McDermaid ◽  
...  

AbstractUnderstanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we use the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock-scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown own-rooted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across two years and three different irrigation treatments. Results described here demonstrate that 1) the largest source of variation in leaf shape stems from the interaction of rootstock by irrigation; 2) leaf position, but also rootstock and rootstock by irrigation interaction, are the primary sources of variation in leaf ion concentrations; and 3) gene expression in scion leaves exhibited significantly different patterns of gene expression from ungrafted vines, and these expression patterns were rootstock-specific. Our work provides an initial description of the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics and gene expression in grapevine scions. Further work across multiple years, environments and additional phenotypes is required in order to determine how the relationship between the rootstock and the scion can best be leveraged for adapting grapevines to a changing climate.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Auinash Kalsotra ◽  
Ravi Singh ◽  
Chad Creighton ◽  
Thomas Cooper

Myotonic dystrophy type 1 (DM1) is a dominantly inherited disease that affects multiple organ systems. Cardiac involvement, which is characterized by conduction defects and arrhythmias, is the second leading cause of death in DM1 patients. The causative mutation is a CTG expansion in the 3' untranslated region of DMPK gene resulting in aberrant expression of CUG repeat RNA that accumulates into nuclear foci and causes misregulation in alternative splicing. Here we show that heart-specific and inducible expression of CUG repeat RNA in a DM1 mouse model results in global reactivation of embryonic gene expression program in adult heart that is distinct from a general hypertrophic stress response. Using q-PCR TaqMan arrays, we identified 54 miRNAs that were differentially expressed in DM1 mouse hearts one week following induction of CUG repeat RNA. Interestingly, 83% (45/54) of them exhibited a developmental shift in expression towards the embryonic pattern. Because over 90% (41/45) of them were down regulated within 72 hr after induction of repeat RNA and only 2/22 examined decreased in two unrelated mouse models of heart disease, we conclude their reduced expression is specific to DM1 and not simply a general response to cardiac injury. Microarray studies revealed a developmental switch not only in the miRNA expression patterns but also a pervasive shift in mRNA steady state levels of a number of genes to embryonic stage. Intriguingly, we found that loss of MBNL1 or gain of CELF1 activity, two major RNA binding proteins disrupted in DM1, are not driving the miRNA misregulation since their expression is indistinguishable between wild type, MBNL1 knock out and CELF1 over expressing mice. Moreover, comparable decrease in ten out of ten primary miRNA transcripts examined suggests loss of expression is not due to a processing defect. Instead, we discovered that adult-to-embryonic shift in expression of select micro- and messenger RNAs in DM1 heart occurs due to specific inactivation of a Mef2 transcriptional program. We are currently determining causal contributions of this Mef2-miRNA circuitry in the developmental reprogramming of gene expression in DM1 as well as its direct role in cardiac manifestations of this disease.



2018 ◽  
Author(s):  
N. Martínez-Abadías ◽  
R. Mateu ◽  
J. Sastre ◽  
S Motch Perrine ◽  
M Yoon ◽  
...  

AbstractThe earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which can be obscured later in development due to secondary phenotypic effects. We here develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying geometric morphometrics to 3D gene expression data obtained by Optical Projection Tomography, our approach is sensitive enough to find regulatory abnormalities never previously detected. We identified subtle but significant differences in gene expression of a downstream target of the Fgfr2 mutation associated with Apert syndrome. Challenging previous reports, we demonstrate that Apert syndrome mouse models can further our understanding of limb defects in the human condition. Our method can be applied to other organ systems and models to investigate the etiology of malformations.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Neus Martínez-Abadías ◽  
Roger Mateu Estivill ◽  
Jaume Sastre Tomas ◽  
Susan Motch Perrine ◽  
Melissa Yoon ◽  
...  

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.



Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  


Zuriat ◽  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Nono Carsono ◽  
Christian Bachem

Tuberization in potato is a complex developmental process resulting in the differentiation of stolon into the storage organ, tuber. During tuberization, change in gene expression has been known to occur. To study gene expression during tuberization over the time, in vitro tuberization system provides a suitable tool, due to its synchronous in tuber formation. An early six days axillary bud growing on tuber induction medium is a crucial development since a large number of genes change in their expression patterns during this period. In order to identify, isolate and sequencing the genes which displaying differential pattern between tuberizing and non-tuberizing potato explants during six days in vitro tuberization, cDNA-AFLP fingerprint, method for the visualization of gene expression using cDNA as template which is amplified to generate an RNA-fingerprinting, was used in this experiment. Seventeen primer combinations were chosen based on their expression profile from cDNA-AFLP fingerprint. Forty five TDFs (transcript derived fragment), which displayed differential expressions, were obtained. Tuberizing explants had much more TDFs, which developmentally regulated, than those from non tuberizing explants. Seven TDFs were isolated, cloned and then sequenced. One TDF did not find similarity in the current databases. The nucleotide sequence of TDF F showed best similarity to invertase ezymes from the databases. The homology of six TDFs with known sequences is discussed in this paper.



Sign in / Sign up

Export Citation Format

Share Document