scholarly journals Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis

2018 ◽  
Author(s):  
N. Martínez-Abadías ◽  
R. Mateu ◽  
J. Sastre ◽  
S Motch Perrine ◽  
M Yoon ◽  
...  

AbstractThe earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which can be obscured later in development due to secondary phenotypic effects. We here develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying geometric morphometrics to 3D gene expression data obtained by Optical Projection Tomography, our approach is sensitive enough to find regulatory abnormalities never previously detected. We identified subtle but significant differences in gene expression of a downstream target of the Fgfr2 mutation associated with Apert syndrome. Challenging previous reports, we demonstrate that Apert syndrome mouse models can further our understanding of limb defects in the human condition. Our method can be applied to other organ systems and models to investigate the etiology of malformations.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Neus Martínez-Abadías ◽  
Roger Mateu Estivill ◽  
Jaume Sastre Tomas ◽  
Susan Motch Perrine ◽  
Melissa Yoon ◽  
...  

The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations.





Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Marlin Touma ◽  
Ashley Cass ◽  
Xuedong Kang ◽  
Yan Zhao ◽  
Reshma Biniwale ◽  
...  

Background: Fetal to neonatal transition of heart is an elaborate process, during which, neonatal cardiomyocytes undergo functional maturation and terminal exit from the cell cycle. However, transcriptome programming in neonatal cardiac chambers during perinatal stages is understudied. In particular, the changes in long non-coding RNAs (lncRNAs) in neonatal heart have not been explored. Objective: To achieve transcriptome-wide analysis of lncRNAs in neonatal left ventricle (LV) and right ventricle (RV) during maturation stages using deep RNA-Sequencing Methods: Deep RNA-sequencing was performed on male newborn mouse (C57 BL) LV and RV at 3 time points of perinatal circulatory transition: P0, P3 and P7. Reads were mapped to mouse genome (mm10). The lncRNAs annotated in NONCODE database were identified. Differentially expressed lncRNAs were defined as those with coefficient of variation ≥0.2, at a false discovery rate ≤0.05, and expressed at ≥3 RPKM in at least one sample. Correlated lncRNAs/ gene pairs were identified using Pearson’s (r2≥0.8, P≤0.05). A subset of LncRNAs/gene expression was validated using qRT-PCR. Results: Out of the 70, 983 observed unique lncRNAs, approximately 7000 were identified exhibiting significant variation during maturation windows with highly spatial-temporal dependent expression patterns, including approximately 5000 known and 2000 novel lncRNAs. Notably, 20% of these lncRNAs were located within 50 KB of a protein coding gene. Out of a total of 2400 lncRNAs/gene pairs, 10 % exhibited significantly concordant (lncRNA/gene) expression patterns. These correlated genes were significantly enriched in metabolism, cell cycle and contractility functional ontology. Interestingly, some of these lncRNAs exhibited concordance with their neighboring gene in human tissues with congenital heart defects, suggesting conserved, potentially significant, regulatory function. Conclusions: Transcriptome programming during neonatal heart maturation involves global changes in lncRNAs. Their expression concordance with neighboring protein coding genes implicates potential important regulatory role of lncRNAs in neonatal heart chamber specification and congenital diseases.



2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Auinash Kalsotra ◽  
Ravi Singh ◽  
Chad Creighton ◽  
Thomas Cooper

Myotonic dystrophy type 1 (DM1) is a dominantly inherited disease that affects multiple organ systems. Cardiac involvement, which is characterized by conduction defects and arrhythmias, is the second leading cause of death in DM1 patients. The causative mutation is a CTG expansion in the 3' untranslated region of DMPK gene resulting in aberrant expression of CUG repeat RNA that accumulates into nuclear foci and causes misregulation in alternative splicing. Here we show that heart-specific and inducible expression of CUG repeat RNA in a DM1 mouse model results in global reactivation of embryonic gene expression program in adult heart that is distinct from a general hypertrophic stress response. Using q-PCR TaqMan arrays, we identified 54 miRNAs that were differentially expressed in DM1 mouse hearts one week following induction of CUG repeat RNA. Interestingly, 83% (45/54) of them exhibited a developmental shift in expression towards the embryonic pattern. Because over 90% (41/45) of them were down regulated within 72 hr after induction of repeat RNA and only 2/22 examined decreased in two unrelated mouse models of heart disease, we conclude their reduced expression is specific to DM1 and not simply a general response to cardiac injury. Microarray studies revealed a developmental switch not only in the miRNA expression patterns but also a pervasive shift in mRNA steady state levels of a number of genes to embryonic stage. Intriguingly, we found that loss of MBNL1 or gain of CELF1 activity, two major RNA binding proteins disrupted in DM1, are not driving the miRNA misregulation since their expression is indistinguishable between wild type, MBNL1 knock out and CELF1 over expressing mice. Moreover, comparable decrease in ten out of ten primary miRNA transcripts examined suggests loss of expression is not due to a processing defect. Instead, we discovered that adult-to-embryonic shift in expression of select micro- and messenger RNAs in DM1 heart occurs due to specific inactivation of a Mef2 transcriptional program. We are currently determining causal contributions of this Mef2-miRNA circuitry in the developmental reprogramming of gene expression in DM1 as well as its direct role in cardiac manifestations of this disease.



2021 ◽  
Author(s):  
Manuel Neumann ◽  
Xiaocai Xu ◽  
Cezary Smaczniak ◽  
Julia Schumacher ◽  
Wenhao Yan ◽  
...  

Identity and functions of plant cells are influenced by their precise cellular location within the plant body. Cellular heterogeneity in growth and differentiation trajectories results in organ patterning. Therefore, assessing this heterogeneity at molecular scale is a major question in developmental biology. Single-cell transcriptomics (scRNA-seq) allows to characterize and quantify gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during the scRNA-seq procedure. To recover the original location of cells is essential to link gene activity with cellular function and morphology. Here, we reconstruct genome-wide gene expression patterns of individual cells in a floral meristem by combining single-nuclei RNA-seq with 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the data are used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com



2018 ◽  
Author(s):  
Zoë Migicovsky ◽  
Zachary N. Harris ◽  
Laura L. Klein ◽  
Mao Li ◽  
Adam McDermaid ◽  
...  

AbstractUnderstanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we use the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock-scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown own-rooted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across two years and three different irrigation treatments. Results described here demonstrate that 1) the largest source of variation in leaf shape stems from the interaction of rootstock by irrigation; 2) leaf position, but also rootstock and rootstock by irrigation interaction, are the primary sources of variation in leaf ion concentrations; and 3) gene expression in scion leaves exhibited significantly different patterns of gene expression from ungrafted vines, and these expression patterns were rootstock-specific. Our work provides an initial description of the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics and gene expression in grapevine scions. Further work across multiple years, environments and additional phenotypes is required in order to determine how the relationship between the rootstock and the scion can best be leveraged for adapting grapevines to a changing climate.



2019 ◽  
Vol 143 ◽  
pp. 257-264 ◽  
Author(s):  
Juan Liu ◽  
Chao Jiang ◽  
Tong Chen ◽  
Liangping Zha ◽  
Jie Zhang ◽  
...  


2014 ◽  
Vol 9 (10) ◽  
pp. 2464-2475 ◽  
Author(s):  
Frédérique Rozier ◽  
Vincent Mirabet ◽  
Teva Vernoux ◽  
Pradeep Das


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document