scholarly journals Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize

2018 ◽  
Author(s):  
Chong Teng ◽  
Han Zhang ◽  
Reza Hammond ◽  
Kun Huang ◽  
Blake C. Meyers ◽  
...  

AbstractSmall RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suresh Pokhrel ◽  
Kun Huang ◽  
Sébastien Bélanger ◽  
Junpeng Zhan ◽  
Jeffrey L. Caplan ◽  
...  

AbstractPlant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. eabh0556 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

The plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and regulates meiosis. Here, we reveal the molecular mechanism underlying this reprogramming. We demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by 24-nucleotide small interfering RNAs (siRNAs) transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) through activity of CLSY3, a chromatin remodeler absent in other anther cells. Tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Tapetum-derived siRNAs also silence germline transposons, safeguarding genome integrity. Our results reveal that tapetal siRNAs are sufficient to reconstitute germline methylation patterns and drive functional methylation reprogramming throughout the male germline.


2021 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

AbstractThe plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and facilitates meiosis. Why reprogramming is limited to the germline and how specific genes are chosen is unknown. Here, we demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by germline-specific siRNAs transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) via activity of the tapetum-specific chromatin remodeler CLASSY3. Remarkably, tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Finally, we demonstrate that these nurse cell-derived siRNAs (niRNAs) silence germline transposons, thereby safeguarding genome integrity. Our results reveal that tapetal niRNAs are sufficient to reconstitute germline methylation patterns and drive extensive, functional methylation reprogramming analogous to piRNA-mediated reprogramming in animal germlines.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Anikó Meijer ◽  
Tim De Meyer ◽  
Klaas Vandepoele ◽  
Tina Kyndt

Abstract Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 781-797
Author(s):  
R Keith Slotkin ◽  
Michael Freeling ◽  
Damon Lisch

Abstract Mutations in a number of genes responsible for the maintenance of transposon silencing have been reported. However, the initiation of epigenetic silencing of transposable elements is poorly characterized. Here, we report the identification of a single dominant locus, Mu killer (Muk), that acts to silence MuDR, the autonomous regulatory transposon of the Mutator family of transposable elements in maize. Muk results in the methylation of MuDR TIRs and is competent to silence one or several active MuDR elements. Silencing by Muk is not dependent on the position of the MuDR element and occurs gradually during plant development. Transcript levels of the MuDR transposase, mudrA, decrease substantially when Muk is present. The other transcript encoded by MuDR, mudrB, also fails to accumulate in the poly(A) RNA fraction when MuDR and Muk are combined. Additionally, plants undergoing MuDR silencing produce small, mudrA-homologous ∼26-nt RNAs, suggesting a role for RNA-directed DNA methylation in MuDR silencing. MuDR elements silenced by Muk remain silenced even in plants that do not inherit Muk, suggesting that Muk is required for the initiation of MuDR silencing but not for its maintenance.


2020 ◽  
Author(s):  
Alex Harkess ◽  
Adam J. Bewick ◽  
Zefu Lu ◽  
Paul Fourounjian ◽  
Joachim Messing ◽  
...  

Abstract5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here, we report that a monocot plant, Spirodela polyrhiza, has lost CG gene body methylation, genome-wide CHH methylation, and the presence or expression of several genes in the highly conserved RNA-directed DNA methylation (RdDM) pathway. It has also lost the CHH methyltransferase CHROMOMETHYLASE 2. Consequently, the transcriptome is depleted of 24-nucleotide, heterochromatic, small interfering RNAs that act as guides for the deposition of 5mC to RdDM-targeted loci in all other currently sampled angiosperm genomes. Although the genome displays low levels of genome-wide 5mC primarily at LTR retrotransposons, CG maintenance methylation is still functional. In contrast, CHG methylation is weakly maintained even though H3K9me2 is present at loci dispersed throughout the euchromatin and highly enriched at regions likely demarcating pericentromeric regions. Collectively, these results illustrate that S. polyrhiza is maintaining CG and CHG methylation mostly at repeats in the absence of small RNAs. S. polyrhiza reproduces rapidly through clonal propagation in aquatic environments, which we hypothesize may enable low levels of maintenance methylation to persist in large populations.Significance StatementDNA methylation is a widespread chromatin modification that is regularly found in all plant species. By examining one aquatic duckweed species, Spirodela polyrhiza, we find that it has lost highly conserved genes involved in methylation of DNA at sites often associated with repetitive DNA, and within genes, however DNA methylation and heterochromatin is maintained during cell division at other sites. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.


2020 ◽  
Author(s):  
Dylan J. Ziegler ◽  
Deirdre Khan ◽  
Nadège Pulgar-Vidal ◽  
Isobel A.P. Parkin ◽  
Stephen J. Robinson ◽  
...  

AbstractPolyploidy has predominated the genetic history of the angiosperms, and allopolyploidy is known to have contributed to the vast speciation of flowering plants. Brassica napus, one of the world’s most important oilseeds, is one such polyploid species originating from the interspecific hybridization of Brassica rapa (An) and Brassica oleracea (Cn). Nascent amphidiploids must balance progenitor genomes during reproduction, though the role of epigenetic regulation in subgenome maintenance is unknown. The seed is the pivotal developmental transition into the new sporophytic generation and as such undergoes substantial epigenetic modifications. We investigated subgenome bias between the An and Cn subgenomes as well as across syntenic regions by profiling DNA methylation and siRNAs characteristic of B. napus seed development. DNA methylation and siRNA accumulation were prevalent in the Cn subgenome and most pronounced early during seed morphogenesis. Hypermethylation during seed maturation was most pronounced on non-coding elements, including promoters, repetitive elements, and siRNAs. Methylation on siRNA clusters was more prevalent in syntenic regions of the Cn subgenome and implies selective silencing of genomic loci of the seed. Together, we find compelling evidence for the asymmetrical epigenetic regulation of the An and Cn subgenomes of Brassica napus across seed development.


Author(s):  
Parth Patel ◽  
Sandra M. Mathioni ◽  
Reza Hammond ◽  
Alex E. Harkess ◽  
Atul Kakrana ◽  
...  

AbstractIn monocots other than maize and rice, the repertoire and diversity of microRNAs (miRNAs) and the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly characterized. To remedy this, we sequenced small RNAs from vegetative and dissected inflorescence tissue in 28 phylogenetically diverse monocots and from several early-diverging angiosperm lineages, as well as publicly available data from 10 additional monocot species. We annotated miRNAs, siRNAs and phasiRNAs across the monocot phylogeny, identifying miRNAs apparently lost or gained in the grasses relative to other monocot families, as well as a number of tRNA fragments misannotated as miRNAs. Using our miRNA database cleaned of these misannotations, we identified conservation at the 8th, 9th, 19th and 3’ end positions that we hypothesize are signatures of selection for processing, targeting, or Argonaute sorting. We show that 21-nt reproductive phasiRNAs are far more numerous in grass genomes than other monocots. Based on sequenced monocot genomes and transcriptomes, DICER-LIKE5 (DCL5), important to 24-nt phasiRNA biogenesis, likely originated via gene duplication before the diversification of the grasses. This curated database of phylogenetically diverse monocot miRNAs, siRNAs, and phasiRNAs represents a large collection of data that should facilitate continued exploration of small RNA diversification in flowering plants.


2021 ◽  
Author(s):  
Suresh Pokhrel ◽  
Kun Huang ◽  
Blake C. Meyers

AbstractPlant small RNAs (sRNAs) play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: pre-meiotic 21-nt phasiRNAs triggered by miR2118, and meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine are produced by the canonical trigger, miR2275, as well as by other non-conserved triggers, miR482/2118 and aco_cand81. These triggering miRNAs are localized in microspore mother cells (MMC) and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a new trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry. We validated the presence of miR2275-derived 24-nt phasiRNAs pathway in rose. Finally, we evaluated all the eudicots that have been validated for the presence of 24-nt phasiRNAs as models to study biogenesis and function of 24-nt phasiRNAs and conclude that columbine would be an excellent model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.


Sign in / Sign up

Export Citation Format

Share Document