scholarly journals Reproductive phasiRNA loci and DICER-LIKE5, but not microRNA loci, diversified in monocotyledonous plants

Author(s):  
Parth Patel ◽  
Sandra M. Mathioni ◽  
Reza Hammond ◽  
Alex E. Harkess ◽  
Atul Kakrana ◽  
...  

AbstractIn monocots other than maize and rice, the repertoire and diversity of microRNAs (miRNAs) and the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly characterized. To remedy this, we sequenced small RNAs from vegetative and dissected inflorescence tissue in 28 phylogenetically diverse monocots and from several early-diverging angiosperm lineages, as well as publicly available data from 10 additional monocot species. We annotated miRNAs, siRNAs and phasiRNAs across the monocot phylogeny, identifying miRNAs apparently lost or gained in the grasses relative to other monocot families, as well as a number of tRNA fragments misannotated as miRNAs. Using our miRNA database cleaned of these misannotations, we identified conservation at the 8th, 9th, 19th and 3’ end positions that we hypothesize are signatures of selection for processing, targeting, or Argonaute sorting. We show that 21-nt reproductive phasiRNAs are far more numerous in grass genomes than other monocots. Based on sequenced monocot genomes and transcriptomes, DICER-LIKE5 (DCL5), important to 24-nt phasiRNA biogenesis, likely originated via gene duplication before the diversification of the grasses. This curated database of phylogenetically diverse monocot miRNAs, siRNAs, and phasiRNAs represents a large collection of data that should facilitate continued exploration of small RNA diversification in flowering plants.

2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Yongli Qiao ◽  
Rui Xia ◽  
Jixian Zhai ◽  
Yingnan Hou ◽  
Li Feng ◽  
...  

Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondary small interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of small RNAs trafficking at the host–pathogen interface are discussed. Expected final online publication date for the Annual Review of Phytopathology, Volume 59 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Parasitology ◽  
2019 ◽  
Vol 147 (8) ◽  
pp. 855-864
Author(s):  
Collette Britton ◽  
Roz Laing ◽  
Eileen Devaney

AbstractSmall RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface.


Reproduction ◽  
2009 ◽  
Vol 137 (6) ◽  
pp. 901-911 ◽  
Author(s):  
Zuping He ◽  
Maria Kokkinaki ◽  
Disha Pant ◽  
G Ian Gallicano ◽  
Martin Dym

Small RNA molecules (small RNAs), including small interfering RNAs (siRNAs), microRNAs (miRNAs), and piwi-interacting RNAs (piRNAs), have recently emerged as important regulators of gene expression at the post-transcriptional or translation level. Significant progress has recently been made utilizing small RNAs in elucidating the molecular mechanisms regulating spermatogenesis. Spermatogenesis is a complex process that involves the division and eventual differentiation of spermatogonial stem cells into mature spermatozoa. The process of spermatogenesis is composed of several phases: mitotic proliferation of spermatogonia to produce spermatocytes; two meiotic divisions of spermatocytes to generate haploid round spermatids; and spermiogenesis, the final phase that involves the maturation of early-round spermatids into elongated mature spermatids. A number of miRNAs are expressed abundantly in male germ cells throughout spermatogenesis, while piRNAs are only present in pachytene spermatocytes and round spermatids. In this review, we first address the synthesis, mechanisms of action, and functions of siRNA, miRNA, and piRNA, and then we focus on the recent advancements in defining the small RNAs in the regulation of spermatogenesis. Concerns pertaining to the use of siRNAs in exploring spermatogenesis mechanisms and open questions in miRNAs and piRNAs in this field are highlighted. The potential applications of small RNAs to male contraception and treatment for male infertility and testicular cancer are also discussed.


2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
António Miguel de Jesus Domingues ◽  
Hanna Lukas ◽  
Maria Mendez-Lago ◽  
René F. Ketting

AbstractRNA interference was first described in the nematode Caenorhabditis elegans. Ever since, several new endogenous small RNA pathways have been described and characterized to different degrees. Much like plants, but unlike Drosophila and mammals, worms have RNA-dependent RNA Polymerases (RdRPs) that directly synthesize small RNAs using other transcripts as a template. The very prominent secondary small interfering RNAs, also called 22G-RNAs, produced by the RdRPs RRF-1 and EGO-1 in C. elegans, maintain the 5’ triphosphate group, stemming from RdRP activity, also after loading into an Argonaute protein. This creates a technical issue, since 5’PPP groups decrease cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA species, a common practice in the field is the treatment of RNA samples, prior to library preparation, with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so an alternative must be devised. We turned to RNA 5’ pyrophosphohydrolase (RppH), a commercially available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species and show that RppH- and TAP-derived datasets can be used in direct comparison.


2021 ◽  
Author(s):  
Abhinandan Mani Tripathi ◽  
Rajneesh Singh ◽  
Akanksha Singh ◽  
Ashwani Kumar Verma ◽  
Parneeta Mishra ◽  
...  

ABSTRACTSmall RNAs including microRNAs (miRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Some small RNAs, mostly 22-nucleotide long trigger biogenesis of secondary small interfering RNAs (siRNAs). Those siRNAs having distinctive phased configuration are known as phased siRNAs (phasiRNAs) and act either in cis or trans enhancing silencing cascade. Here, we report natural variants of MIR158 having deletions or insertions led to negligible or reduced expression of miR158. The deletion/insertion events affected processing of primary transcript of miR158 to precursor and to mature miR158. We show that miR158 targets a pseudo-pentatricopeptide gene and its abolished activity led to 21-nucleotide tertiary phasiRNA generation from its target. The biogenesis of these phasiRNAS is triggered by TAS2 derived two siRNAs. Accordingly, small RNA analyses of these natural variants, mutants and over-expression lines of MIR158 or its target exhibited enhanced or reduced phasiRNA biogenesis. Finally, we functionally validated the highest expressed tertiary phasiRNA that targets NHX2 thereby regulating transpiration and stomatal conductance. Overall, we deciphered a new module of small RNA network, miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2, suggesting an additional layer of gene regulation and larger role of pseudogene in plants.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256196
Author(s):  
Matthias Zytnicki ◽  
Ignacio González

Small RNAs (sRNAs) encompass a great variety of molecules of different kinds, such as microRNAs, small interfering RNAs, Piwi-associated RNA, among others. These sRNAs have a wide range of activities, which include gene regulation, protection against virus, transposable element silencing, and have been identified as a key actor in determining the development of the cell. Small RNA sequencing is thus routinely used to assess the expression of the diversity of sRNAs, usually in the context of differentially expression, where two conditions are compared. Tools that detect differentially expressed microRNAs are numerous, because microRNAs are well documented, and the associated genes are well defined. However, tools are lacking to detect other types of sRNAs, which are less studied, and whose precursor RNA is not well characterized. We present here a new method, called srnadiff, which finds all kinds of differentially expressed sRNAs. To the extent of our knowledge, srnadiff is the first tool that detects differentially expressed sRNAs without the use of external information, such as genomic annotation or additional sequences of sRNAs.


2018 ◽  
Author(s):  
Chong Teng ◽  
Han Zhang ◽  
Reza Hammond ◽  
Kun Huang ◽  
Blake C. Meyers ◽  
...  

AbstractSmall RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suresh Pokhrel ◽  
Kun Huang ◽  
Sébastien Bélanger ◽  
Junpeng Zhan ◽  
Jeffrey L. Caplan ◽  
...  

AbstractPlant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.


2015 ◽  
Author(s):  
Joshua Elkington

Small RNAs have been determined to have an essential role in gene regulation. However, competition between small RNAs is a poorly understood aspect of small RNA dynamics. Recent evidence has suggested that competition between small RNA pathways arises from a scarcity of common resources essential for small RNA activity. In order to understand how competition affects small RNAs in C. elegans, a system of differential equations was used. The model recreates normal behavior of small RNAs and uses random sampling in order to determine the coefficients of competition for each small RNA class. The model includes endogenous small-interfering RNAs (endo-siRNA), exogenous small-interfering RNAs (exo-siRNA), and microRNAs (miRNA). The model predicts that exo-siRNAs is dominated by competition between endo-siRNAs and miRNAs. Furthermore, the model predicts that competition is required for normal levels of endogenous small RNAs to be maintained. Although the model makes several assumptions about cell dynamics, the model is still useful in order to understand competition between small RNA pathways.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qin Feng ◽  
Yan Li ◽  
Zhi-Xue Zhao ◽  
Wen-Ming Wang

AbstractSmall RNAs (sRNAs) are mainly classified into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. miRNAs originate from single-stranded RNA precursors, whereas siRNAs originate from double-stranded RNA precursors that are synthesized by RNA-dependent RNA polymerases. Both of single-stranded and double-stranded RNA precursors are processed into sRNAs by Dicer-like proteins. Then, the sRNAs are loaded into ARGONAUTE proteins, forming RNA-induced silencing complexes (RISCs). The RISCs repress the expression of target genes with sequences complementary to the sRNAs through the cleavage of transcripts, the inhibition of translation or DNA methylation. Here, we summarize the recent progress of sRNA pathway in the interactions of rice with various parasitic organisms, including fungi, viruses, bacteria, as well as insects. Besides, we also discuss the hormone signal in sRNA pathway, and the emerging roles of circular RNAs and long non-coding RNAs in rice immunity. Obviously, small RNA pathway may act as a part of rice innate immunity to coordinate with growth and development.


Sign in / Sign up

Export Citation Format

Share Document