scholarly journals Antibody-mediated immobilization of virions in mucus

2018 ◽  
Author(s):  
Melanie A. Jensen ◽  
Ying-Ying Wang ◽  
Samuel K. Lai ◽  
M. Gregory Forest ◽  
Scott A. McKinley

AbstractAntibodies have been shown to hinder the movement of Herpes Simplex Virus (HSV) virions in cervicovaginal mucus (CVM), as well as other viruses in other mucus secretions. However, it has not been possible to directly observe the mechanisms underlying this phenomenon, so the nature of virion-antibody-mucin interactions remain poorly understood. In this work, we analyzed thousands of virion traces from single particle tracking experiments to explicate how antibodies must cooperate to immobilize virions for relatively long time periods. First, using a clustering analysis, we observed a clear separation between two classes of virion behavior: Freely Diffusing and Immobilized. While the proportion of Freely Diffusing virions decreased with antibody concentration, the magnitude of their diffusivity did not, implying an all-or-nothing dichotomy in the pathwise effect of the antibodies. Proceeding under the assumption that all binding events are reversible, we used a novel switch-point detection method to conclude that there are very few, if any, state-switches on the experimental time scale of twenty seconds. To understand this slow state-switching, we analyzed a recently proposed continuous-time Markov chain model for binding kinetics and virion movement. Model analysis implied that virion immobilization requires cooperation by multiple antibodies that are simultaneously bound to the virion and mucin matrix, and that there is an entanglement phenomenon that accelerates antibody-mucin binding when a virion is immobilized. In addition to developing a widely-applicable framework for analyzing multi-state particle behavior, this work substantially enhances our mechanistic understanding of how antibodies can reinforce a mucus barrier against passive invasive species.

Author(s):  
Rina Mardiati ◽  
Bambang R Trilaksono ◽  
Yudi S Gondokaryono ◽  
Sony S Wibowo

<p>Mixed traffic systems are dynamically complex since there are many parameters and variables that influence the interactions between the different kinds of vehicles. Modeling the behavior of vehicles, especially motorcycle which has erratic behavior is still being developed continuously, especially in developing countries which have heterogeneous traffic. To get a better understanding of motorcycle behavior, one can look at maneuvers performed by drivers. In this research, we tried to build a model of motorcycle movement which only focused on maneuver action to avoid the obstacle along with the trajectories using a Markov Chain approach. In Markov Chain, the maneuver of motorcycle will described by state transition. The state transition model is depend on probability function which will use for determine what action will be executed next. The maneuver of motorcycle using Markov Chain model was validated by comparing the analytical result with the naturalistic data, with similarity is calculated using MSE. In order to know how good our proposed method can describe the maneuver of motorcycle, we try to compare the MSE of the trajectory based on Markov Chain model with those using polynomial approach. The MSE results showed the performance of Markov Chain Model give the smallest MSE which 0.7666 about 0.24 better than 4th order polynomial.</p>


2018 ◽  
Vol 8 (9) ◽  
pp. 1524 ◽  
Author(s):  
Yunfeng Hu ◽  
Batunacun

Land-use and land-cover change (LUCC) are currently contested topics in the research of global environment change and sustainable change. Identifying the historic land-use change process is important for the new economic development belt (the Zhujiang–Xijiang Economic Belt, ZXEB). During this research, based on long-time-series land-use and land-cover data, while using a combination of a transition matrix method and Markov chain model, the authors derive the patterns, processes, and spatial autocorrelations of land-use and land-cover changes in the ZXEB for the periods 1990–2000 and 2000–2017. Additionally, the authors discuss the spatial autocorrelation of land-use in the ZXEB and the major drivers of urbanization. The results indicate the following: (1) The area of cropland reduces during the two periods, and woodland decreases after the year 2000. The woodland is the most stable land-use type in both periods. (2) Built-up land expansion is the most important land-use conversion process; the major drivers of built-up land expansion are policy intervention, GDP (gross domestic product), population growth, and rural population migration. (3) Transition possibilities indicate that after 2000, most land-use activities become stronger, the global and local Moran’s I of all land-use types show that the spatial autocorrelations have become more closely related, and the spatial autocorrelation of built-up land has become stronger. Policies focus on migration from rural to urban, and peri-urban development is crucial for future sustainable urbanization.


2004 ◽  
Vol 68 (2) ◽  
pp. 346 ◽  
Author(s):  
Keijan Wu ◽  
Naoise Nunan ◽  
John W. Crawford ◽  
Iain M. Young ◽  
Karl Ritz

Author(s):  
R. Jamuna

CpG islands (CGIs) play a vital role in genome analysis as genomic markers.  Identification of the CpG pair has contributed not only to the prediction of promoters but also to the understanding of the epigenetic causes of cancer. In the human genome [1] wherever the dinucleotides CG occurs the C nucleotide (cytosine) undergoes chemical modifications. There is a relatively high probability of this modification that mutates C into a T. For biologically important reasons the mutation modification process is suppressed in short stretches of the genome, such as ‘start’ regions. In these regions [2] predominant CpG dinucleotides are found than elsewhere. Such regions are called CpG islands. DNA methylation is an effective means by which gene expression is silenced. In normal cells, DNA methylation functions to prevent the expression of imprinted and inactive X chromosome genes. In cancerous cells, DNA methylation inactivates tumor-suppressor genes, as well as DNA repair genes, can disrupt cell-cycle regulation. The most current methods for identifying CGIs suffered from various limitations and involved a lot of human interventions. This paper gives an easy searching technique with data mining of Markov Chain in genes. Markov chain model has been applied to study the probability of occurrence of C-G pair in the given   gene sequence. Maximum Likelihood estimators for the transition probabilities for each model and analgously for the  model has been developed and log odds ratio that is calculated estimates the presence or absence of CpG is lands in the given gene which brings in many  facts for the cancer detection in human genome.


2020 ◽  
Vol 11 (1) ◽  
pp. 317
Author(s):  
Taewon Song ◽  
Taeyoon Kim

The representative media access control (MAC) mechanism of IEEE 802.11 is a distributed coordination function (DCF), which operates based on carrier-sense multiple access with collision avoidance (CSMA/CA) with binary exponential backoff. The next amendment of IEEE 802.11 being developed for future Wi-Fi by the task group-be is called IEEE 802.11be, where the multi-link operation is mainly discussed when it comes to MAC layer operation. The multi-link operation discussed in IEEE 802.11be allows multi-link devices to establish multiple links and operate them simultaneously. Since the medium access on a link may affect the other links, and the conventional MAC mechanism has just taken account of a single link, the DCF should be used after careful consideration for multi-link operation. In this paper, we summarize the DCFs being reviewed to support the multi-radio multi-link operation in IEEE 802.11be and analyze their performance using the Markov chain model. Throughout the extensive performance evaluation, we summarize each MAC protocol’s pros and cons and discuss essential findings of the candidate MAC protocols.


Author(s):  
Pavlos Kolias ◽  
Nikolaos Stavropoulos ◽  
Alexandra Papadopoulou ◽  
Theodoros Kostakidis

Coaches in basketball often need to know how specific rotation line-ups perform in either offense or defense and choose the most efficient formation, according to their specific needs. In this research, a sample of 1131 ball possession phases of Greek Basket League was utilized, in order to estimate the offensive and defensive performance of each formation. Offensive and defensive ratings for each formation were calculated as a function of points scored or received, respectively, over possessions, where possessions were estimated using a multiple regression model. Furthermore, a Markov chain model was implemented to estimate the probabilities of the associated formation’s performance in the long run. The model could allow us to distinguish between overperforming and underperforming formations and revealed the probabilities over the evolution of the game, for each formation to be in a specific rating category. The results indicated that the most dominant formation, in terms of offense, is Point Guard-Point Guard-Small Forward-Power Forward-Center, while defensively schema Point Guard-Shooting Guard-Small Forward-Center-Center had the highest rating. Such results provide information, which could operate as a supplementary tool for the coach’s decisions, related to which rotation line-up patterns are mostly suitable during a basketball game.


2021 ◽  
pp. 1-11
Author(s):  
Yuan Zou ◽  
Daoli Yang ◽  
Yuchen Pan

Gross domestic product (GDP) is the most widely-used tool for measuring the overall situation of a country’s economic activity within a specified period of time. A more accurate forecasting of GDP based on standardized procedures with known samples available is conducive to guide decision making of government, enterprises and individuals. This study devotes to enhance the accuracy regarding GDP forecasting with given sample of historical data. To achieve this purpose, the study incorporates artificial neural network (ANN) into grey Markov chain model to modify the residual error, thus develops a novel hybrid model called grey Markov chain with ANN error correction (abbreviated as GMCM_ANN), which assembles the advantages of three components to fit nonlinear forecasting with limited sample sizes. The new model has been tested by adopting the historical data, which includes the original GDP data of the United States, Japan, China and India from 2000 to 2019, and also provides predications on four countries’ GDP up to 2022. Four models including autoregressive integrated moving average model, back-propagation neural network, the traditional GM(1,1) and grey Markov chain model are as benchmarks for comparison of the predicted accuracy and application scope. The obtained results are satisfactory and indicate superior forecasting performance of the proposed approach in terms of accuracy and universality.


Sign in / Sign up

Export Citation Format

Share Document