scholarly journals Individualized non-invasive brain stimulation engages the subgenual anterior cingulate and amygdala

2018 ◽  
Author(s):  
Desmond J Oathes ◽  
Jared Zimmerman ◽  
Romain Duprat ◽  
Seda Cavdaroglu ◽  
Morgan Scully ◽  
...  

Brain stimulation is used clinically to treat a variety of neurological and psychiatric conditions. The mechanisms of the clinical effects of these brain-based therapies are presumably dependent on their effects on brain networks. It has been hypothesized that using individualized brain network maps is an optimal strategy for defining network boundaries and topologies. Traditional non-invasive imaging can determine correlations between structural or functional time series. However, they cannot easily establish hierarchies in communication flow as done in non-human animals using invasive methods. In the present study, we interleaved functional MRI recordings with non-invasive transcranial magnetic stimulation in the attempt to map causal communication between the prefrontal cortex and two subcortical structures thought to contribute to affective dysregulation: the subgenual anterior cingulate cortex (sgACC) and the amygdala. In both cases, we found evidence that these brain areas were engaged when TMS was applied to prefrontal sites determined from each participant's previous fMRI scan. Specifically, after transforming individual participant images to within-scan quantiles of evoked TMS response, we modeled the average quantile response within a given region across stimulation sites and individuals to demonstrate that the targets were differentially influenced by TMS. Furthermore, we found that the sgACC distributed brain network, estimated in a separate cohort, was engaged in response to sgACC focused TMS and was partially separable from the proximal default mode network response. The amygdala, but not its distributed network, responded to TMS. Our findings indicate that individual targeting and brain response measurements usefully capture causal circuit mapping to the sgACC and amygdala in humans, setting the stage for approaches to non-invasively modulate subcortical nodes of distributed brain networks in clinical interventions and mechanistic human neuroscience studies.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yael D. Lewis ◽  
Lucy Gallop ◽  
Iain C. Campbell ◽  
Ulrike Schmidt

Abstract Background Most psychiatric disorders have their onset in childhood or adolescence, and if not fully treated have the potential for causing life-long psycho-social and physical sequelae. Effective psychotherapeutic and medication treatments exist, but a significant proportion of children and young people do not make a full recovery. Thus, novel, safe, brain-based alternatives or adjuncts to conventional treatments are needed. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation (NIBS) techniques which have shown clinical benefits in adult psychiatric conditions. However, in children and young people their efficacy is not well established. The objective of this study will be to systematically evaluate the evidence on clinical effects of NIBS in children and young people with psychiatric disorders, assessing disorder-specific symptoms, mood and neurocognitive functions. Methods We designed and registered a study protocol for a systematic review. We will include randomised and non-randomised controlled trials and observational studies (e.g. cohort, case-control, case series) assessing the effects of NIBS in children and young people (aged ≤ 24 years old) for psychiatric disorders. The primary outcome will be reduction of disorder-specific symptoms. Secondary outcomes will include effects on mood and cognition. A comprehensive search from database inception onwards will be conducted in MEDLINE, EMBASE and PsycINFO. Grey literature will be identified through searching multiple clinical trial registries. Two reviewers will independently screen all citations, full-text articles and abstract data. The methodological quality of the studies will be appraised using appropriate tools. We will provide a narrative synthesis of the evidence and according to heterogeneity will conduct an appropriate meta-analysis. Additional analyses will be conducted to explore the potential sources of heterogeneity. Discussion This systematic review will provide a broad and comprehensive evaluation of the evidence on clinical effects of NIBS in children and young people with psychiatric disorders. Our findings will be reported according to the PRISMA guidelines and will be of interest to multiple audiences (including patients, researchers, healthcare professionals and policy-makers). Results will be published in a peer-reviewed journal. Systematic review registration PROSPERO CRD42019158957


2016 ◽  
Vol 87 (12) ◽  
pp. e1.130-e1
Author(s):  
Lucia Li ◽  
Ines Violante ◽  
Ewan Ross ◽  
Rob Leech ◽  
Adam Hampshire ◽  
...  

2013 ◽  
Vol 31 (4) ◽  
pp. 383-388 ◽  
Author(s):  
Guifeng Zhang ◽  
Shanshan Qu ◽  
Yu Zheng ◽  
Junqi Chen ◽  
Guizhu Deng ◽  
...  

Objective To identify the key cerebral functional region affected by acupuncture point needling by examining cerebral networks using functional connectivity MRI (fcMRI) and analysing changes in the key regions of these brain networks at different time points after needle removal. Methods Twelve healthy volunteers received 30 min of electroacupuncture (EA) at the Baihui (GV20) and Yintang acupuncture points and then underwent two fMRI scans, one each at 5 and 15 min after needle removal. Related brain networks were analysed centred at different ‘seeds’, centres which functionally connect the other cerebral regions in an organised network, such as the anterior frontal lobe, anterior cingulate gyrus, parahippocampal gyrus, amygdala, hypothalamus, head of the caudate nucleus and anterior lobe of the cerebellum. Networks were analysed based on the resting cerebral functional connection, and the differences in the activities of the brain networks between the two time points were compared. Results At 5 min after needle removal, 12 brain functional regions were involved in organising the network centred at the caudate nucleus ‘seed.’ This number was greater than the number of related brain networks centred at the other ‘seeds’. At 15 min after needle removal, 15 and 14 brain functional regions were involved in organised networks centred at the parahippocampal and hypothalamus ‘seeds’, respectively; these numbers were greater than the numbers of other related brain networks centred at the other ‘seeds’. Conclusions A brain network composed of a large number of cerebral functional regions was found after EA at GV20 and Yintang in healthy volunteers. The key brain ‘seed’ supporting the largest brain network changed between 5 and 15 min after needle removal.


2018 ◽  
Author(s):  
Charles J. Lynch ◽  
Andrew L. Breeden ◽  
Evan M. Gordon ◽  
Joseph B. C. Cherry ◽  
Peter E. Turkeltaub ◽  
...  

ABSTRACTNon-invasive brain stimulation (NIBS) is a promising treatment for psychiatric and neurologic conditions, but outcomes are variable across treated individuals. This variability may be due in part to uncertainty in the selection of the stimulation site – a challenge complicated further by the variable organization of individual human brains. In principle, precise targeting of individual-specific brain areas serving outsized roles in cognition could improve the efficacy of NIBS. Network theory predicts that the importance of a node in network can be inferred from its connections; as such, we hypothesized that targeting individual-specific “hub” brain areas with NIBS would impact cognition more than non-hub brain areas. We first demonstrate that the spatial positioning of hubs is variable across individuals, but highly-reproducible when mapped with sufficient per-individual rsfMRI data. We then tested our hypothesis in healthy individuals using a prospective, within-subject, double-blind design. We found that inhibiting a hub with NIBS disrupted information processing during working-memory to a greater extent than inhibiting a non-hub area of the same gyrus. Furthermore, inhibition of hubs linking specific control networks and sensorimotor systems was retrospectively found to be most impactful. Based on these findings, we propose that precise mapping of individual-specific brain network features could inform future interventions in patients.SIGNIFICANCE STATEMENTThe network organization of every person’s brain is different, but non-invasive brain stimulation (NIBS) interventions do not take this variation into account. Here we demonstrate that the spatial positions of brain areas theoretically serving important roles in cognition, called hubs, differs across individual humans, but are stable within an individual upon repeated neuroimaging. We found that administering NIBS to these individual-specific hub brain areas impacted cognition more than stimulation of non-hub areas. This finding indicates that future NIBS interventions can target individual-specific, but cognitively-relevant features of human brains.


2019 ◽  
Author(s):  
Wenyu Tu ◽  
Zilu Ma ◽  
Yuncong Ma ◽  
Nanyin Zhang

AbstractThe architecture of brain networks has been extensively studied in multiple species. However, exactly how the brain network reconfigures when a local region stops functioning remains elusive. By combining chemogenetics and resting-state functional magnetic resonance imaging (rsfMRI) in awake rodents, we investigated the causal impact of acutely inactivating a hub region (i.e. dorsal anterior cingulate cortex) on brain network properties. We found that disrupting hub activity profoundly changed the function the default-mode network (DMN), and this change was associated with altered DMN-related behavior. Suppressing hub activity also impacted the topological architecture of the whole-brain network in network resilience, segregation and small worldness, but not network integration. This study has established a system that allows for mechanistically dissecting the relationship between local regions and brain network properties. Our data provide direct evidence supporting the hypothesis that acute dysfunction of a brain hub can cause large-scale network changes. This study opens an avenue of manipulating brain networks by controlling hub-node activity.


2021 ◽  
Author(s):  
Mangor Pedersen ◽  
Andrew Zalesky

SummaryThe extent to which resting-state fMRI (rsfMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous rsfMRI and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced during intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is typically increased in brain disorders, we hypothesised that intracranial stimulation would reduce the brain’s switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved rsfMRI connectivity. Network switching was significantly decreased during epochs with brain stimulation compared to epochs with no brain stimulation. The initial stimulation onset of brain stimulation was associated with the greatest decrease in network switching, followed by a more consistent reduction in network switching throughout the scans. These changes were most commonly observed in cortical networks spatially distant from the stimulation targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in neurological disease.HighlightsrsfMRI network switching is attenuated during intracranial brain stimulationStimulation-induced switching is observed distant from electrode targetsOur results are validated across a range of network parametersNetwork models may inform clinical efficacy of brain stimulation


2019 ◽  
Author(s):  
Daniela Zöller ◽  
Corrado Sandini ◽  
Fikret Işik Karahanoğlu ◽  
Maria Carmela Padula ◽  
Marie Schaer ◽  
...  

AbstractProdromal positive psychotic symptoms and anxiety are two strong risk factors for schizophrenia in 22q11.2 deletion syndrome (22q11DS). The analysis of large-scale brain network dynamics during rest is promising to investigate aberrant brain function and identify potentially more reliable biomarkers. We retrieved and examined dynamics of large-scale functional brain networks using innovation-driven co-activation patterns (iCAPs) and probed into functional signatures of prodromal psychotic symptoms and anxiety. Patients with 22q11DS had shorter activation in cognitive brain networks and longer activation in emotion processing networks. Functional signatures of prodromal psychotic symptoms confirmed an implication of cingulo-prefrontal salience network activation duration and coupling. Functional signatures of anxiety un-covered an implication of amygdala activation and coupling, indicating differential roles of dorsal and ventral sub-divisions of anterior cingulate and medial prefrontal cortices. These results confirm that the dynamic nature of brain network activation contains essential function to develop clinically relevant imaging markers of psychosis vulnerability.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2067
Author(s):  
Charly Caredda ◽  
Laurent Mahieu-Williame ◽  
Raphaël Sablong ◽  
Michaël Sdika ◽  
Fabien C. Schneider ◽  
...  

RGB optical imaging is a marker-free, contactless, and non-invasive technique that is able to monitor hemodynamic brain response following neuronal activation using task-based and resting-state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an ideal solution to identify resting-state networks during a neurosurgical operation. We applied resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify resting-state networks. We adapted two resting-state methodologies from fMRI for the identification of resting-state networks using intraoperative RGB imaging. Measurements were performed in 3 patients who underwent resection of lesions adjacent to motor sites. The resting-state networks were compared to the identifications provided by RGB task-based imaging and electrical brain stimulation. Intraoperative RGB resting-state networks corresponded to RGB task-based imaging (DICE:0.55±0.29). Resting state procedures showed a strong correspondence between them (DICE:0.66±0.11) and with electrical brain stimulation. RGB imaging is a relevant technique for intraoperative resting-state networks identification. Intraoperative resting-state imaging has several advantages compared to functional task-based analyses: data acquisition is shorter, less complex, and less demanding for the patients, especially for those unable to perform the tasks.


Sign in / Sign up

Export Citation Format

Share Document