scholarly journals The Replication-Competent HIV-1 Latent Reservoir is Primarily Established Near the Time of Therapy Initiation

2019 ◽  
Author(s):  
Melissa-Rose Abrahams ◽  
Sarah B. Joseph ◽  
Nigel Garrett ◽  
Lynn Tyers ◽  
Matthew Moeser ◽  
...  

AbstractAlthough antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. Little is known about the dynamics of reservoir formation and this reservoir forms even when ART is initiated early after infection. The reservoir of individuals who initiate therapy in chronic infection is generally larger and genetically more diverse than that of individuals who initiate in acute infection, suggesting the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting CD4+ T cells from nine women on therapy to viral sequences circulating in blood collected longitudinally prior to therapy. We found that 78% of viruses from the latent reservoir were most genetically similar to viruses replicating just prior to therapy initiation. This proportion is far greater than expected if the reservoir forms continuously and is always long-lived. Thus, therapy alters the host environment in a way that allows the formation of a majority of the long-lived latent HIV-1 reservoir.One Sentence SummaryMost of the long-lived, replication-competent HIV-1 reservoir is formed at the time of therapy initiation.

2019 ◽  
Vol 11 (513) ◽  
pp. eaaw5589 ◽  
Author(s):  
Melissa-Rose Abrahams ◽  
Sarah B. Joseph ◽  
Nigel Garrett ◽  
Lynn Tyers ◽  
Matthew Moeser ◽  
...  

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.


2004 ◽  
Vol 200 (6) ◽  
pp. 701-712 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Daniel E. Kaufmann ◽  
Xu G. Yu ◽  
Stanley K. Mui ◽  
Marylyn M. Addo ◽  
...  

Virus-specific CD8+ T cells are associated with declining viremia in acute human immunodeficiency virus (HIV)1 infection, but do not correlate with control of viremia in chronic infection, suggesting a progressive functional defect not measured by interferon γ assays presently used. Here, we demonstrate that HIV-1–specific CD8+ T cells proliferate rapidly upon encounter with cognate antigen in acute infection, but lose this capacity with ongoing viral replication. This functional defect can be induced in vitro by depletion of CD4+ T cells or addition of interleukin 2–neutralizing antibodies, and can be corrected in chronic infection in vitro by addition of autologous CD4+ T cells isolated during acute infection and in vivo by vaccine-mediated induction of HIV-1–specific CD4+ T helper cell responses. These data demonstrate a loss of HIV-1–specific CD8+ T cell function that not only correlates with progressive infection, but also can be restored in chronic infection by augmentation of HIV-1–specific T helper cell function. This identification of a reversible defect in cell-mediated immunity in chronic HIV-1 infection has important implications for immunotherapeutic interventions.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Retrovirology ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 119 ◽  
Author(s):  
Camille L Novis ◽  
Nancie M Archin ◽  
Maria J Buzon ◽  
Eric Verdin ◽  
June L Round ◽  
...  

Author(s):  
Alyssa R Martin ◽  
Alexandra M Bender ◽  
Jada Hackman ◽  
Kyungyoon J Kwon ◽  
Briana A Lynch ◽  
...  

Abstract Background The HIV-1 latent reservoir (LR) in resting CD4 + T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. Methods We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from ten HIV-1-infected patients on ART using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. Results The frequencies of CD4 + T cells with intact proviruses were not significantly different in PB vs LN (61vs104/10 6CD4 + cells), and were substantially lower than frequencies of CD4 + T cells with defective proviruses. The frequencies of CD4 + T cells induced to produce high levels of viral RNA were not significantly different in PB vs LN (4.3/10 6 vs 7.9/10 6), but were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. Conclusions These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs


2013 ◽  
Vol 87 (17) ◽  
pp. 9768-9779 ◽  
Author(s):  
A. Shen ◽  
J. J. Baker ◽  
G. L. Scott ◽  
Y. P. Davis ◽  
Y.-Y. Ho ◽  
...  

10.1038/nm880 ◽  
2003 ◽  
Vol 9 (6) ◽  
pp. 727-728 ◽  
Author(s):  
Janet D Siliciano ◽  
Joleen Kajdas ◽  
Diana Finzi ◽  
Thomas C Quinn ◽  
Karen Chadwick ◽  
...  

2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Line K. Vibholm ◽  
Julio C. C. Lorenzi ◽  
Joy A. Pai ◽  
Yehuda Z. Cohen ◽  
Thiago Y. Oliveira ◽  
...  

ABSTRACT The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia. IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination.


Sign in / Sign up

Export Citation Format

Share Document