scholarly journals Neofunctionalisation of basic helix loop helix proteins occurred when plants colonised the land

2019 ◽  
Author(s):  
Clémence Bonnot ◽  
Alexander J. Hetherington ◽  
Clément Champion ◽  
Holger Breuninger ◽  
Steven Kelly ◽  
...  

ABSTRACTROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes control the development of structures – rhizoids, root hairs, gemmae, mucilage papillae – that develop from single cells at the surface of diverse groups of land plants. RSL proteins constitute a subclass (VIIIc) of the basic helix loop helix (bHLH) class VIII transcription factor family. We set out to determine if the function of RSL genes in the control of cell differentiation in land plants was inherited from streptophyte algal ancestor. The Charophyceae are a monophyletic class of streptophyte algae with tissue-like structures and rhizoids. We identified the single class VIII bHLH gene from the charophyceaen alga Chara braunii (CbbHLHVIII). Phylogenetic analysis suggests that this protein is sister to the RSL (bHLH subclass VIIIc) proteins and together they constitute a monophyletic group. Expression of CbbHLHVIII does not compensate for loss of the RSL function in either Marchantia polymorpha or Arabidopsis thaliana. Furthermore, CbbHLHVIII is expressed at sites of morphogenesis in C. braunii – the apices, nodes and gametangia – but not in rhizoids. This indicates that C. braunii class VIII protein is functionally different from land plant RSL proteins; they control rhizoid development in land plants but not in the charophycean algae. These data are consistent with the hypothesis that RSL proteins and their function in the differentiation of cells at the plant surface evolved in the lineage leading to land plants after the divergence of the land plants and C. braunii from their last common ancestor. This may have occurred by neofunctionalisation at or before the colonisation of the land by streptophytes.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Suvi Honkanen ◽  
Anna Thamm ◽  
Mario A Arteaga-Vazquez ◽  
Liam Dolan

Basic helix-loop-helix transcription factors encoded by RSL class I genes control a gene regulatory network that positively regulates the development of filamentous rooting cells – root hairs and rhizoids – in land plants. The GLABRA2 transcription factor negatively regulates these genes in the angiosperm Arabidopsis thaliana. To find negative regulators of RSL class I genes in early diverging land plants we conducted a mutant screen in the liverwort Marchantia polymorpha. This identified FEW RHIZOIDS1 (MpFRH1) microRNA (miRNA) that negatively regulates the RSL class I gene MpRSL1. The miRNA and its mRNA target constitute a feedback mechanism that controls epidermal cell differentiation. MpFRH1 miRNA target sites are conserved among liverwort RSL class I mRNAs but are not present in RSL class I mRNAs of other land plants. These findings indicate that while RSL class I genes are ancient and conserved, independent negative regulatory mechanisms evolved in different lineages during land plant evolution.


2015 ◽  
Vol 112 (29) ◽  
pp. E3959-E3968 ◽  
Author(s):  
Thomas Ho Yuen Tam ◽  
Bruno Catarino ◽  
Liam Dolan

Land plants develop filamentous cells—root hairs, rhizoids, and caulonemata—at the interface with the soil. Members of the group XI basic helix–loop–helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago.


2019 ◽  
Author(s):  
Anna Thamm ◽  
Timothy E Saunders ◽  
Liam Dolan

ABSTRACTLateral inhibition patterns differentiated cells during development in bacteria, metazoans and land plants. Tip-growing rhizoid cells develop among flat epidermal cells in the epidermis of the early diverging land plant Marchantia polymorpha. We show that the majority of rhizoid cells develop individually but some develop in linear, one-dimensional clusters of between two and seven rhizoid cells in wild type plants. The distribution of rhizoid cells can be accounted for within a simple model of lateral inhibition. The model also predicted that, in the absence of lateral inhibition, rhizoid cell clusters would be two-dimensional with larger clusters than those formed with lateral inhibition. Rhizoid differentiation in Marchantia polymorpha is positively regulated by the ROOT HAIR DEFECTIVE SIX-LIKE1 (MpRSL1) basic Helix Loop Helix (bHLH) transcription factor which is directly repressed by the FEW RHIZOIDS1 (MpFRH1) miRNA. To test if MpFRH1 miRNA acts during lateral inhibition we generated loss-of-function mutants that did not produce the MpFRH1 miRNA. Two-dimensional clusters of rhizoids develop in Mpfrh1loss-of-function (lof) mutants as predicted by the model for plants that lack lateral inhibition. Furthermore, clusters of up to nine rhizoid cells developed in the Mpfrh1lof mutants compared to a maximum number of seven observed in wild type. The higher steady state levels of MpRSL1 mRNA in Mpfrh1lof mutants indicate that MpFRH1-mediated lateral inhibition involves the repression of MpRSL1 activity. Together the modelling and genetic data indicate that the pattern of cell differentiation in the M. polymorpha epidermis is consistent with a lateral inhibition process in which MpFRH1 miRNA represses MpRSL1. This discovery suggests that novel mechanisms of lateral inhibition may operate in different lineages of land plants, unlike metazoans where the conserved Delta-Notch signaling system controls lateral inhibition in diverse metazoan lineages.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 102-111 ◽  
Author(s):  
T Hoang ◽  
E Paradis ◽  
G Brady ◽  
F Billia ◽  
K Nakahara ◽  
...  

Abstract The SCL gene (also called Tal-1 or TCL5) was identified because of its association with chromosomal translocations in childhood T-cell lymphoid leukemias. SCL codes for a basic helix-loop-helix (bHLH) factor that can function as a transcriptional activator or repressor. In the adult, SCL expression is restricted to hematopoietic cells and tissues, but its function in the process of lineage commitment is unknown. The present study was designed to address the role of SCL in hematopoietic cell differentiation. SCL expression was determined in primary hematopoietic cells through the screening of cDNA samples obtained by reverse transcription-polymerase chain reaction (RT-PCR) from single cells at different stages of differentiation. SCL RNA expression was highest in bipotential and committed erythroid precursors and diminished with subsequent maturation to proerythroblasts and normoblasts. In contrast, SCL mRNA was low to undetectable in precursors of granulocytes and monocytes and their maturing progeny. The same pattern of expression was observed after erythroid or monocytic differentiation of a bipotent cell line, TF-1, in that SCL mRNA levels remained elevated during erythroid differentiation and were downregulated with monocytic differentiation. Accordingly, TF-1 was chosen as a model to investigate the functional significance of this divergent pattern of SCL expression in the two lineages. Four independent clones stably transfected with an SCL expression vector exhibited enhanced spontaneous and delta-aminolevulinic acid-induced erythroid differentiation as measured by glycophorin expression and hemoglobinization, consistent with the view that SCL is a positive regulator of erythroid differentiation. Furthermore, constitutive SCL expression interfered with monocytic differentiation, as assessed by the generation of adherent cells and the expression of Fc gamma RII in response to TPA. These results suggest that the downregulation of SCL may be required for monocytic differentiation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


2020 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

AbstractKNOX and BELL transcription factors regulate distinct steps of diploid development in the green lineages. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types, and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrella and Arabidopsis, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that of C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


2018 ◽  
Vol 115 (16) ◽  
pp. E3846-E3855 ◽  
Author(s):  
Philip Carella ◽  
Anna Gogleva ◽  
Marta Tomaselli ◽  
Carolin Alfs ◽  
Sebastian Schornack

The expansion of plants onto land was a formative event that brought forth profound changes to the earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


2019 ◽  
Vol 61 (3) ◽  
pp. 470-480
Author(s):  
Mai Kanazawa ◽  
Yoko Ikeda ◽  
Ryuichi Nishihama ◽  
Shohei Yamaoka ◽  
Nam-Hee Lee ◽  
...  

Abstract Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.


2010 ◽  
Vol 42 (3) ◽  
pp. 264-267 ◽  
Author(s):  
Keke Yi ◽  
Benoît Menand ◽  
Elizabeth Bell ◽  
Liam Dolan

2017 ◽  
Author(s):  
Philip Carella ◽  
Anna Gogleva ◽  
Marta Tomaselli ◽  
Carolin Alfs ◽  
Sebastian Schornack

ABSTRACTThe expansion of plants onto land was a formative event that brought forth profound changes to the Earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane-syntaxin MpSYP13B but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


Sign in / Sign up

Export Citation Format

Share Document