scholarly journals Chromatin interactome mapping at 139 independent breast cancer risk signals

2019 ◽  
Author(s):  
Jonathan Beesley ◽  
Haran Sivakumaran ◽  
Mahdi Moradi Marjaneh ◽  
Luize G. Lima ◽  
Kristine M. Hillman ◽  
...  

ABSTRACTGenome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals, and explore the functional mechanism underlying altered risk at the 12q24 risk region. Our results demonstrate the power of combining genetics, computational genomics and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jonathan Beesley ◽  
Haran Sivakumaran ◽  
Mahdi Moradi Marjaneh ◽  
Luize G. Lima ◽  
Kristine M. Hillman ◽  
...  

Abstract Background Genome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. Results We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers, and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals and explore the functional mechanism underlying altered risk at the 12q24 risk region. Conclusions Our results demonstrate the power of combining genetics, computational genomics, and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.


2019 ◽  
Author(s):  
Laura Fachal ◽  
Hugues Aschard ◽  
Jonathan Beesley ◽  
Daniel R. Barnes ◽  
Jamie Allen ◽  
...  

ABSTRACTGenome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium, and enriched genomic features to determine variants with high posterior probabilities (HPPs) of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of potentially causal variants, using gene expression (eQTL), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways, were over-represented among the 178 highest confidence target genes.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ana Jacinta-Fernandes ◽  
Joana M. Xavier ◽  
Ramiro Magno ◽  
Joel G. Lage ◽  
Ana-Teresa Maia

Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 1029-1031 ◽  
Author(s):  
Yussanne P. Ma ◽  
Flora E. van Leeuwen ◽  
Rosie Cooke ◽  
Annegien Broeks ◽  
Victor Enciso-Mora ◽  
...  

Abstract Women treated at young ages with supradiaphragmatic radiotherapy for Hodgkin lymphoma (HL) have a highly increased risk of breast cancer. For personalized advice and follow-up regimens for patients, information is needed on how the radiotherapy-related risk is affected by other breast cancer risk factors. Genome-wide association studies have identified 14 independently replicated common single nucleotide polymorphisms that influence breast cancer risk. To examine whether these variants contribute to risk of radiation-associated breast cancer in HL, we analyzed 2 independent case-control series, from the United Kingdom and The Netherlands, totaling 693 HL patients, 232 with breast cancer and 461 without. rs1219648, which annotates the FGFR2 gene, was associated with risk in both series (combined per-allele odds ratio = 1.59, 95% confidence interval: 1.26-2.02; P = .000111). These data provide evidence that genetic variation in FGFR2 influences radiation-induced breast cancer risk.


2022 ◽  
Author(s):  
Joseph Rosenbluh ◽  
Natasha Tuano ◽  
Jonathan Beesley ◽  
Murray Manning ◽  
Wei Shi ◽  
...  

Abstract Genome-wide association studies (GWAS) have identified >200 loci associated with breast cancer (BC) risk. The majority of candidate causal variants (CCVs) are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association and identifying the phenotype it mediates is a major challenge in the interpretation and translation of GWAS. Here, we used pooled CRISPR activation and suppression screens to evaluate predicted GWAS target genes, and to define the cancer phenotypes they mediate. We measured proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We performed 60 CRISPR screens and identified 21 genes predicted with high confidence to be GWAS targets that drive a cancer phenotype by driving a proliferation or DNA damage response in breast cells. We validated the regulation of a subset of these genes by BC-risk variants, and show the utility of expression profiling for drug repurposing. We provide a platform for identifying gene targets of risk variants, and present a blueprint of interventions for BC risk reduction and treatment.


Sign in / Sign up

Export Citation Format

Share Document