genomic feature
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 49)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Lakshay Anand ◽  
Carlos M. Rodriguez Lopez

Abstract Background The recent advancements in high-throughput sequencing have resulted in the availability of annotated genomes, as well as of multi-omics data for many living organisms. This has increased the need for graphic tools that allow the concurrent visualization of genomes and feature-associated multi-omics data on single publication-ready plots. Results We present chromoMap, an R package, developed for the construction of interactive visualizations of chromosomes/chromosomal regions, mapping of any chromosomal feature with known coordinates (i.e., protein coding genes, transposable elements, non-coding RNAs, microsatellites, etc.), and chromosomal regional characteristics (i.e. genomic feature density, gene expression, DNA methylation, chromatin modifications, etc.) of organisms with a genome assembly. ChromoMap can also integrate multi-omics data (genomics, transcriptomics and epigenomics) in relation to their occurrence across chromosomes. ChromoMap takes tab-delimited files (BED like) or alternatively R objects to specify the genomic co-ordinates of the chromosomes and elements to annotate. Rendered chromosomes are composed of continuous windows of a given range, which, on hover, display detailed information about the elements annotated within that range. By adjusting parameters of a single function, users can generate a variety of plots that can either be saved as static image or as HTML documents. Conclusions ChromoMap’s flexibility allows for concurrent visualization of genomic data in each strand of a given chromosome, or of more than one homologous chromosome; allowing the comparison of multi-omic data between genotypes (e.g. species, varieties, etc.) or between homologous chromosomes of phased diploid/polyploid genomes. chromoMap is an extensive tool that can be potentially used in various bioinformatics analysis pipelines for genomic visualization of multi-omics data.


2021 ◽  
Vol 89 (4) ◽  
pp. 48
Author(s):  
Ashraf S. A. El-Sayed ◽  
Maher Fathalla ◽  
Ahmed A. Shindia ◽  
Amgad M. Rady ◽  
Ashraf F. El-Baz ◽  
...  

Taxadiene synthase (TDS) is the rate-limiting enzyme of Taxol biosynthesis that cyclizes the geranylgeranyl pyrophosphate into taxadiene. Attenuating Taxol productivity by fungi is the main challenge impeding its industrial application; it is possible that silencing the expression of TDS is the most noticeable genomic feature associated with Taxol-biosynthetic abolishing in fungi. As such, the characterization of TDS with unique biochemical properties and autonomous expression that is independent of transcriptional factors from the host is the main challenge. Thus, the objective of this study was to kinetically characterize TDS from endophytic bacteria isolated from different plants harboring Taxol-producing endophytic fungi. Among the recovered 23 isolates, Bacillus koreensis and Stenotrophomonas maltophilia achieved the highest TDS activity. Upon using the Plackett–Burman design, the TDS productivity achieved by B. koreensis (18.1 µmol/mg/min) and S. maltophilia (14.6 µmol/mg/min) increased by ~2.2-fold over the control. The enzyme was purified by gel-filtration and ion-exchange chromatography with ~15 overall folds and with molecular subunit structure 65 and 80 kDa from B. koreensis and S. maltophilia, respectively. The chemical identity of taxadiene was authenticated from the GC-MS analyses, which provided the same mass fragmentation pattern of authentic taxadiene. The tds gene was screened by PCR with nested primers of the conservative active site domains, and the amplicons were sequenced, displaying a higher similarity with tds from T. baccata and T. brevifolia. The highest TDS activity by both bacterial isolates was recorded at 37–40 °C. The Apo-TDSs retained ~50% of its initial holoenzyme activities, ensuring their metalloproteinic identity. The activity of purified TDS was completely restored upon the addition of Mg2+, confirming the identity of Mg2+ as a cofactor. The TDS activity was dramatically reduced upon the addition of DTNB and MBTH, ensuring the implementation of cysteine-reactive thiols and ammonia groups on their active site domains. This is the first report exploring the autonomous robust expression TDS from B. koreensis and S. maltophilia with a higher affinity to cyclize GGPP into taxadiene, which could be a novel platform for taxadiene production as intermediary metabolites of Taxol biosynthesis.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Ruifei Yang ◽  
Zhenqiang Xu ◽  
Qi Wang ◽  
Di Zhu ◽  
Cheng Bian ◽  
...  

Abstract Background Growth traits are of great importance for poultry breeding and production and have been the topic of extensive investigation, with many quantitative trait loci (QTL) detected. However, due to their complex genetic background, few causative genes have been confirmed and the underlying molecular mechanisms remain unclear, thus limiting our understanding of QTL and their potential use for the genetic improvement of poultry. Therefore, deciphering the genetic architecture is a promising avenue for optimising genomic prediction strategies and exploiting genomic information for commercial breeding. The objectives of this study were to: (1) conduct a genome-wide association study to identify key genetic factors and explore the polygenicity of chicken growth traits; (2) investigate the efficiency of genomic prediction in broilers; and (3) evaluate genomic predictions that harness genomic features. Results We identified five significant QTL, including one on chromosome 4 with major effects and four on chromosomes 1, 2, 17, and 27 with minor effects, accounting for 14.5 to 34.1% and 0.2 to 2.6% of the genomic additive genetic variance, respectively, and 23.3 to 46.7% and 0.6 to 4.5% of the observed predictive accuracy of breeding values, respectively. Further analysis showed that the QTL with minor effects collectively had a considerable influence, reflecting the polygenicity of the genetic background. The accuracy of genomic best linear unbiased predictions (BLUP) was improved by 22.0 to 70.3% compared to that of the conventional pedigree-based BLUP model. The genomic feature BLUP model further improved the observed prediction accuracy by 13.8 to 15.2% compared to the genomic BLUP model. Conclusions A major QTL and four minor QTL were identified for growth traits; the remaining variance was due to QTL effects that were too small to be detected. The genomic BLUP and genomic feature BLUP models yielded considerably higher prediction accuracy compared to the pedigree-based BLUP model. This study revealed the polygenicity of growth traits in yellow-plumage chickens and demonstrated that the predictive ability can be greatly improved by using genomic information and related features.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alongkorn Kurilung ◽  
Vincent Perreten ◽  
Nuvee Prapasarakul

Leptospira weilii belongs to the pathogenic Leptospira group and is a causal agent of human and animal leptospirosis in many world regions. L. weilii can produce varied clinical presentations from asymptomatic through acute to chronic infections and occupy several ecological niches. Nevertheless, the genomic feature and genetic basis behind the host adaptability of L. weilii remain elusive due to limited information. Therefore, this study aimed to examine the complete circular genomes of two new L. weilii serogroup Mini strains (CUDO6 and CUD13) recovered from the urine of asymptomatic dogs in Thailand and then compared with the 17 genomes available for L. weilii. Variant calling analysis (VCA) was also undertaken to gain potential insight into the missense mutations, focusing on the known pathogenesis-related genes. Whole genome sequences revealed that the CUDO6 and CUD13 strains each contained two chromosomes and one plasmid, with average genome size and G+C content of 4.37 Mbp and 40.7%, respectively. Both strains harbored almost all the confirmed pathogenesis-related genes in Leptospira. Two novel plasmid sequences, pDO6 and pD13, were identified in the strains CUDO6 and CUD13. Both plasmids contained genes responsible for stress response that may play important roles in bacterial adaptation during persistence in the kidneys. The core-single nucleotide polymorphisms phylogeny demonstrated that both strains had a close genetic relationship. Amongst the 19 L. weilii strains analyzed, the pan-genome analysis showed an open pan-genome structure, correlated with their high genetic diversity. VCA identified missense mutations in genes involved in endoflagella, lipopolysaccharide (LPS) structure, mammalian cell entry protein, and hemolytic activities, and may be associated with host-adaptation in the strains. Missense mutations of the endoflagella genes of CUDO6 and CUD13 were associated with loss of motility. These findings extend the knowledge about the pathogenic molecular mechanisms and genomic evolution of this important zoonotic pathogen.


2021 ◽  
Author(s):  
Samuel N Bogan ◽  
Marie E Strader ◽  
Gretchen E Hofmann

Epigenetic processes are proposed to contribute to phenotypic plasticity. In invertebrates, DNA methylation commonly varies across environments and can correlate or causally associate with phenotype, but its role in transcriptional responses to the environment remains unclear. Maternal environments experienced by the sea urchin Strongylocentrotus purpuratus induce 3 - 6x greater differential CpG methylation in offspring larvae relative to larval developmental environments, suggesting a role for DNA methylation in transgenerational plasticity (TGP). However, a negligible association has been observed between differentially methylated and differentially expressed genes. What gene regulatory roles does invertebrate DNA methylation possess under environmental change, if any? We quantified DNA methylation and gene expression in S. purpuratus larvae exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) or embryogenesis (developmental conditioning). We modeled differential gene expression and differential splicing under maternal conditioning as functions of DNA methylation, incorporating variables for genomic feature and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic architecture associated with differential expression and splicing. Observed transcriptional responses to maternal conditioning were also 4 - 13x more likely when accounting for interactions between methylation and chromatin accessibility. Our results provide evidence that DNA methylation possesses multiple functional roles during TGP in S. purpuratus, but its effects are contingent upon other genomic and epigenomic states. Singularly unpredictive of transcription, DNA methylation is likely one cog in the epigenomic machinery contributing to environmental responses and phenotypic plasticity in S. purpuratus and other invertebrates.


2021 ◽  
Author(s):  
Pamela H Russell ◽  
Ian T Fiddes

Motivation: Bioinformaticians frequently navigate among a diverse set of coordinate systems: for example, converting between genomic, transcript, and protein coordinates. The abstraction of coordinate systems and feature arithmetic allows genomic workflows to be expressed more elegantly and succinctly. However, no publicly available software library offers fully featured interoperable support for multiple coordinate systems. As such, bioinformatics programmers must either implement custom solutions, or make do with existing utilities, which may lack the full functionality they require. Results: We present BioCantor, a Python library that provides integrated library support for arbitrarily related coordinate systems and rich operations on genomic features, with I/O support for a variety of file formats. Availability and implementation: BioCantor is implemented as a Python 3 library with a minimal set of external dependencies. The library is freely available under the MIT license at https://github.com/InscriptaLabs/BioCantor and on the Python Package Index at https://pypi.org/project/BioCantor/. BioCantor has extensive documentation and vignettes available on ReadTheDocs at https://biocantor.readthedocs.io/en/latest/.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 360
Author(s):  
Kristianne Arielle Gabriel ◽  
Maria Rejane Nepacina ◽  
Francis Tablizo ◽  
Carlo Lapid ◽  
Mark Lenczner Mendoza ◽  
...  

Reduced representation sequencing is a practical approach for obtaining genetic variations from a random subsample of the genome. RADseq (Restriction Site-Associated DNA Sequencing), as one of the more popular reduced representation approaches, is currently being used in a wide array of applications including marker development, phylogenetics, and population genomics. A crucial step in designing a RADseq experiment is the selection of one or a pair of restriction enzymes (RE) that will result in sufficient density of loci to meet the objectives of the study, which is not straightforward because of difficulties in obtaining a standard set of REs that can generally be applied to RADseq experimental designs. Here we present RApyDS, a simulation tool that provides users with evaluation metrics to aid in choosing suitable REs based on their target RADseq design. RApyDS can perform simulations for single- or double-digest RADseq, preferably with a supplied reference genome. The tool outputs an overview page, electrophoresis visualization, mapping of restriction cut sites, and RAD loci density across the genome. If supplied with an annotation file, the program can also output evaluation metrics for a specified genomic feature. The tool is currently available at https://github.com/pgcbioinfo/rapyds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Li ◽  
Jia Chang ◽  
Shunmei Chen ◽  
Liangge Wang ◽  
Tung On Yau ◽  
...  

In December 2019, the world awoke to a new betacoronavirus strain named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Betacoronavirus consists of A, B, C and D subgroups. Both SARS-CoV and SARS-CoV-2 belong to betacoronavirus subgroup B. In the present study, we divided betacoronavirus subgroup B into the SARS1 and SARS2 classes by six key insertions and deletions (InDels) in betacoronavirus genomes, and identified a recently detected betacoronavirus strains RmYN02 as a recombinant strain across the SARS1 and SARS2 classes, which has potential to generate a new strain with similar risk as SARS-CoV and SARS-CoV-2. By analyzing genomic features of betacoronavirus, we concluded: (1) the jumping transcription and recombination of CoVs share the same molecular mechanism, which inevitably causes CoV outbreaks; (2) recombination, receptor binding abilities, junction furin cleavage sites (FCSs), first hairpins and ORF8s are main factors contributing to extraordinary transmission, virulence and host adaptability of betacoronavirus; and (3) the strong recombination ability of CoVs integrated other main factors to generate multiple recombinant strains, two of which evolved into SARS-CoV and SARS-CoV-2, resulting in the SARS and COVID-19 pandemics. As the most important genomic features of SARS-CoV and SARS-CoV-2, an enhanced ORF8 and a novel junction FCS, respectively, are indispensable clues for future studies of their origin and evolution. The WIV1 strain without the enhanced ORF8 and the RaTG13 strain without the junction FCS “RRAR” may contribute to, but are not the immediate ancestors of SARS-CoV and SARS-CoV-2, respectively.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11079
Author(s):  
Marcelle Oliveira de Almeida ◽  
Rodrigo Carvalho ◽  
Flavia Figueira Aburjaile ◽  
Fabio Malcher Miranda ◽  
Janaína Canário Cerqueira ◽  
...  

Background Lactobacillus crispatus is the dominant species in the vaginal microbiota associated with health and considered a homeostasis biomarker. Interestingly, some strains are even used as probiotics. However, the genetic mechanisms of L. crispatus involved in the control of the vaginal microbiome and protection against bacterial vaginosis (BV) are not entirely known. To further investigate these mechanisms, we sequenced and characterized the first four L. crispatus genomes from vaginal samples from Brazilian women and used genome-wide association study (GWAS) and comparative analyses to identify genetic mechanisms involved in healthy or BV conditions and selective pressures acting in the vaginal microbiome. Methods The four genomes were sequenced, assembled using ten different strategies and automatically annotated. The functional characterization was performed by bioinformatics tools comparing with known probiotic strains. Moreover, it was selected one representative strain (L. crispatus CRI4) for in vitro detection of phages by electron microscopy. Evolutionary analysis, including phylogeny, GWAS and positive selection were performed using 46 public genomes strains representing health and BV conditions. Results Genes involved in probiotic effects such as lactic acid production, hydrogen peroxide, bacteriocins, and adhesin were identified. Three hemolysins and putrescine production were predicted, although these features are also present in other probiotic strains. The four genomes presented no plasmids, but 14 known families insertion sequences and several prophages were detected. However, none of the mobile genetic elements contained antimicrobial resistance genes. The genomes harbor a CRISPR-Cas subtype II-A system that is probably inactivated due to fragmentation of the genes csn2 and cas9. No genomic feature was associated with a health condition, perhaps due to its multifactorial characteristic. Five genes were identified as under positive selection, but the selective pressure remains to be discovered. In conclusion, the Brazilian strains investigated in this study present potential protective properties, although in vitro and in vivo studies are required to confirm their efficacy and safety to be considered for human use.


2021 ◽  
Author(s):  
Dominique BOEUF ◽  
John M Eppley ◽  
Daniel R Mende ◽  
Rex R Malmstrom ◽  
Tanja Woyke ◽  
...  

Abstract BackgroundOceanic microbiomes play a pivotal role in the global carbon cycle and are central to the transformation and recycling of carbon and energy in the ocean’s interior. SAR324 is a ubiquitous but poorly understood uncultivated clade of Deltaproteobacteria that inhabits the entire water column, from ocean surface waters to its deep interior. Although some progress has been made in elucidating potential metabolic traits of SAR324 in the dark ocean, very little is known about the ecology and the metabolic capabilities of this group in the euphotic and twilight zones. To investigate the comparative genomics, ecology and physiological potential of the SAR324 clade, we examined the distribution and variability of key genomic features and metabolic pathways in this group from surface waters to the abyss in the North Pacific Subtropical Gyre, one of the largest biomes on Earth.Results We leveraged a pangenomic ecological approach, combining spatio-temporally resolved single amplified genome, metagenomic and metatranscriptomic datasets. The data revealed substantial genomic diversity throughout the SAR324 clade, with distinct depth and temporal distributions that clearly differentiated ecotypes. Phylogenomic subclade delineation, environmental distributions, genomic feature similarities, and metabolic capacities revealed congruent groups that, when merged, form Operational Ecogenomic Units (OEUs). The four SAR324 OEUs delineated in this study revealed striking divergence from one another with respect to their habitat-specific metabolic potentials. The OEUs living in the dark or twilight oceans shared genomic features and metabolic capabilities consistent with a sulfur-based chemolithoautotrophic lifestyle. In contrast, those inhabiting the sunlit ocean displayed higher plasticity energy-related metabolic pathways, supporting a presumptive photoheterotrophic lifestyle. In epipelagic SAR324 OEUs, we observed the presence of two types of proton-pumping rhodopsins, as well as genomic, transcriptomic, and ecological evidence for active photoheterotrophy, based on xanthorhodopsin-like light-harvesting proteins.ConclusionsOur approach combining pangenomic and multi-omics profiling revealed a striking divergence in the vertical distribution, genomic composition, metabolic potential, and predicted lifestyle strategies of geographically co-located members of the SAR324 bacterial clade. The results highlight the utility of pangenomic approaches employed across environmental gradients, to decipher the properties and variation in function and ecological traits of specific phylogenetic clades within complex microbiomes.


Sign in / Sign up

Export Citation Format

Share Document