scholarly journals A model for the spatio-temporal design of gene regulatory circuits

2019 ◽  
Author(s):  
Ruud Stoof ◽  
Alexander Wood ◽  
Ángel Goñi-Moreno

AbstractThe design of increasingly complex gene regulatory networks relies upon mathematical modelling to link the gap that goes from conceptualisation to implementation. An overarching challenge is to update modelling abstractions and assumptions as new mechanistic information arises. Although models of bacterial gene regulation are often based on the assumption that the role played by intracellular physical distances between genetic elements is negligible, it has been shown that bacteria are highly ordered organisms, compartmentalizing their vital functions in both time and space. Here, we analysed the dynamical properties of regulatory interactions by explicitly modelling spatial constraints. Key to the model is the combined search by a regulator for its target promoter via 1D sliding along the chromosome and 3D diffusion through the cytoplasm. Moreover, this search was coupled to gene expression dynamics, with special attention to transcription factor-promoter interplay. As a result, promoter activity within the model depends on its physical separation from the regulator source. Simulations showed that by modulating the distance between DNA components in the chromosome, output levels changed accordingly. Finally, previous experimental results with engineered bacteria in which this distance was minimized or enlarged were successfully reproduced by the model. This suggests that the spatial specification of the circuit alone can be exploited as a design parameter to select programmable output levels.

2017 ◽  
Author(s):  
Noa Katz ◽  
Roni Cohen ◽  
Oz Solomon ◽  
Beate Kaufmann ◽  
Orna Atar ◽  
...  

SUMMARYThe construction of complex gene regulatory networks requires both inhibitory and up-regulatory modules. However, the vast majority of RNA-based regulatory “parts” are inhibitory. Using a synthetic biology approach combined with SHAPE-Seq, we explored the regulatory effect of RBP-RNA interactions in bacterial 5’-UTRs. By positioning a library of RNA hairpins upstream of a reporter gene and co-expressing them with the matching RBP, we observed a set of regulatory responses, including translational stimulation, translational repression, and cooperative behavior. Our combined approach revealed three distinct states in-vivo: in the absence of RBPs, the RNA molecules can be found either in a molten state that is amenable to translation, or a structured phase that inhibits translation. In the presence of RBPs, the RNA molecules are in a semi-structured phase with partial translational capacity. Our work provides new insight into RBP-based regulation and a blueprint for designing complete gene regulatory circuits at the post-transcriptional level.


2018 ◽  
Vol 47 (1) ◽  
pp. 447-467 ◽  
Author(s):  
David L. Shis ◽  
Matthew R. Bennett, ◽  
Oleg A. Igoshin

The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.


2017 ◽  
Author(s):  
Bivash Kaity ◽  
Ratan Sarkar ◽  
Buddhapriya Chakrabarti ◽  
Mithun K. Mitra

Waddington’s epigenetic landscape provides a phenomenological understanding of the cell differentiation pathways from the pluripotent to mature lineage-committed cell lines. In light of recent successes in the reverse programming process there has been significant interest in quantifying the underlying landscape picture through the mathematics of gene regulatory networks. We investigate the role of time delays arising from multistep chemical reactions and epigenetic rearrangement on the cell differentiation landscape for a realistic two-gene regulatory network, consisting of selfpromoting and mutually inhibiting genes. Our work provides the first theoretical basis of the transdifferentiation process in the presence of delays, where one differentiated cell type can transition to another directly without passing through the undifferentiated state. Additionally, the interplay of time-delayed feedback and a time dependent chemical drive leads to long-lived oscillatory states in appropriate parameter regimes. This work emphasizes the important role played by time-delayed feedback loops in gene regulatory circuits and provides a framework for the characterization of epigenetic landscapes.


2011 ◽  
Vol 43 (4) ◽  
pp. 505-514 ◽  
Author(s):  
Shahragim Tajbakhsh ◽  
Giacomo Cavalli ◽  
Evelyne Richet

2019 ◽  
Author(s):  
Justin J. Cassidy ◽  
Sebastian Bernasek ◽  
Rachael Bakker ◽  
Ritika Giri ◽  
Nicolás Peláez ◽  
...  

ABSTRACTMetabolic conditions affect the developmental tempo of most animal species. Consequently, developmental gene regulatory networks (GRNs) must faithfully adjust their dynamics to a variable time scale. We find evidence that layered weak repression of genes provides the necessary coupling between GRN output and cellular metabolism. Using a mathematical model that replicates such a scenario, we find that lowering metabolism corrects developmental errors that otherwise occur when different layers of repression are lost. Through mutant analysis, we show that gene expression dynamics are unaffected by loss of repressors, but only when cellular metabolism is reduced. We further show that when metabolism is lowered, formation of a variety of sensory organs inDrosophilais normal despite loss of individual repressors of transcription, mRNA stability, and protein stability. We demonstrate the universality of this phenomenon by experimentally eliminating the entire microRNA family of repressors, and find that all microRNAs are rendered unnecessary when metabolism is reduced. Thus, layered weak repression provides robustness through error frequency suppression, and may provide an evolutionary route to a shorter reproductive cycle.


2021 ◽  
Author(s):  
Kenji Okubo ◽  
Kunihiko Kaneko

Abstract Background: Mendelian inheritance is a fundamental law of genetics. Considering two alleles in a diploid, a phenotype of a heterotype is dominated by a particular homotype according to the law of dominance. This picture is usually based on simple genotype-phenotype mapping in which one gene regulates one phenotype. However, in reality, some interactions between genes can result in deviation from Mendelian dominance. Result: Here, by using the numerical evolution of diploid gene regulatory networks (GRNs), we discuss whether Mendelian dominance evolves beyond the classical case of one-to-one genotype-phenotype mapping. We examine whether complex genotype-phenotype mapping can achieve Mendelian dominance through the evolution of the GRN with interacting genes. Specifically, we extend the GRN model to a diploid case, in which two GRN matrices are added to give gene expression dynamics, and simulate evolution with meiosis and recombination. Our results reveal that Mendelian dominance evolves even under complex genotype-phenotype mapping. This dominance is achieved via a group of genotypes that differ from each other but have a common phenotype given by the expression of target genes. Calculating the degree of dominance shows that it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase in robustness to initial noise. This evolution of Mendelian dominance is associated with phenotypic robustness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of chromosomes from the parents further enhances dominance and robustness. Owing to this dominance, the robustness to genetic differences increases, while the optimal fitness is sustained up to a large difference between the two genomes. Conclusion: Mendelian dominance is achieved by groups of genotypes that are associated with the increase in phenotypic robustness to noise.


2018 ◽  
Author(s):  
Ruth M Williams ◽  
Ivan Candido-Ferreira ◽  
Emmanouela Repapi ◽  
Daria Gavriouchkina ◽  
Upeka Senanayake ◽  
...  

AbstractPrecise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and transient dynamic molecular interactions. Here we present a genome-widein vivoreconstruction of the GRN underlying development of neural crest (NC), an emblematic embryonic multipotent cell population. By coupling NC-specific epigenomic and single-cell transcriptome profiling with genome/epigenome engineeringin vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, noveltrans-factors andcis-signatures. Assembling the NC regulome has allowed the comprehensive reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates. Our integrated approach, allowing dissection of cell-type-specific regulatory circuitsin vivo, has broad implications for GRN discovery and investigation.


2020 ◽  
Author(s):  
Pankaj Khurana ◽  
Apoorv Gupta ◽  
Ragumani Sugadev ◽  
Y K Sharma ◽  
Rajeev Varshney ◽  
...  

Abstract In view of the worldwide spread of the novel Severe Acute Respiratory Syndrome Coronavirus 2 (nSARS-CoV-2) infection pandemic situation, research to repurpose drugs, identify novel drug targets, vaccine candidates, diagnostic markers etc have created a new race to curb the disease. To uncover nSARS-CoV-2-related important biological features and understanding the molecular basis of this disease, network biology and miRNA-gene regulatory motif-based approach is used. 11 antiviral human-microRNAs (miRNAs) which can potentially target SARS-CoV-2 genes were collated; their direct miRNA interactors were identified and a comprehensive nSARS-CoV-2 responsive miRNA:Transcription Factor (TF):gene coregulatory network was built. 1385 miRNA:TF:gene tripartite, Feed-Forward Loops (FFLs) were identified from the network. The network topology was mapped into the biological space and the overrepresented pathways were identified. Four regulatory circuits: hsa-mir-9-5p-EP300-PLCB4, hsa-mir-324-3p-MYC-HLA-F, hsa-mir-1827-E2F1-CTSV and hsa-mir-1277-5p-SP1-CANX are identified. These miRNA-gene regulatory circuits are found to regulate signalling pathways like virus endocytosis, viral replication, inflammatory response, pulmonary vascularization, cell cycle control, virus spike protein stabilization, antigen presentation, etc. Some novel computational evidences for understanding nSARS-CoV-2 molecular mechanisms controlled by these regulatory circuits is put forth. The novel associations of miRNAs and genes identified with this infection are open for experimental validation. Further, these regulatory circuits also suggest potential correlations/similarity in the molecular mechanisms during nSARS-CoV-2 infection and pulmonary diseases and thromboembolic disorders. A detailed molecular snapshot of TGF-β signalling pathway as the common mechanism that could play an important role in controlling common pathophysiology i.e. systemic inflammation, increased pulmonary pressure, ground glass opacities, D-dimer overexpression is also put forth.


Sign in / Sign up

Export Citation Format

Share Document