scholarly journals Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering

2019 ◽  
Author(s):  
Kazuya Segawa ◽  
Naoki Tamura ◽  
Joji Mima

AbstractMembrane tethering is a highly regulated event that occurs during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, 3a, 4a, 5a, 6a, 7a, 9a, 11a, 27a, and 33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly in a chemically defined reconstitution system. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g., Rab-to-lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab-to-lipid ratio of 1:3,000. Comprehensive reconstitution studies further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a, in particular, synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. Thus, our findings establish that, in the physiological context, homotypic and heterotypic trans-assembly of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.

2020 ◽  
Author(s):  
Sanae Ueda ◽  
Naoki Tamura ◽  
Joji Mima

AbstractMembrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5-to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers.


2017 ◽  
Author(s):  
Motoki Inoshita ◽  
Joji Mima

AbstractMembrane tethering is a fundamental process essential for compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, have been reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes still remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on apposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane tethering reactions.


2020 ◽  
Author(s):  
Kana Fujibayashi ◽  
Joji Mima

AbstractArf-family small GTPases are essential protein components for membrane trafficking in all eukaryotic endomembrane systems, particularly during the formation of membrane-bound, coat protein complex-coated transport carriers. In addition to their roles in the transport carrier formation, a number of Arf-family GTPases have been reported to physically associate with coiled-coil tethering proteins and multisubunit tethering complexes, which are responsible for membrane tethering, a process of the initial contact between transport carriers and their target subcellular compartments. Nevertheless, whether and how indeed Arf GTPases are involved in the tethering process remain unclear. Here, using a chemically-defined reconstitution approach with purified proteins of two representative Arf isoforms in humans (Arf1, Arf6) and synthetic liposomes for model membranes, we discovered that Arf6 can function as a bona fide membrane tether, directly and physically linking two distinct lipid bilayers even in the absence of any other tethering factors, whereas Arf1 retained little potency to trigger membrane tethering under the current experimental conditions. Arf6-mediated membrane tethering reactions require trans-assembly of membrane-anchored Arf6 proteins and can be reversibly controlled by the membrane attachment and detachment cycle of Arf6. The intrinsic membrane tethering activity of Arf6 was further found to be significantly inhibited by the presence of membrane-anchored Arf1, suggesting that the tethering-competent Arf6-Arf6 assembly in trans can be prevented by the heterotypic Arf1-Arf6 association in a cis configuration. Taken together, these findings lead us to postulate that self-assemblies of Arf-family small GTPases on lipid bilayers contribute to driving and regulating the tethering events of intracellular membrane trafficking.


Author(s):  
Kana Fujibayashi ◽  
Joji Mima

Arf-family small GTPases are essential protein components for membrane trafficking in all eukaryotic endomembrane systems, particularly during the formation of membrane-bound, coat protein complex-coated transport carriers. In addition to their roles in the transport carrier formation, a number of Arf-family GTPases have been reported to physically associate with coiled-coil tethering proteins and multisubunit tethering complexes, which are responsible for membrane tethering, a process of the initial contact between transport carriers and their target subcellular compartments. Nevertheless, whether and how indeed Arf GTPases are involved in the tethering process remain unclear. Here, using a chemically-defined reconstitution approach with purified proteins of two representative Arf isoforms in humans (Arf1, Arf6) and synthetic liposomes for model membranes, we discovered that Arf6 can function as a bona fide membrane tether, directly and physically linking two distinct lipid bilayers even in the absence of any other tethering factors, whereas Arf1 retained little potency to trigger membrane tethering under the current experimental conditions. Arf6-mediated membrane tethering reactions require trans-assembly of membrane-anchored Arf6 proteins and can be reversibly controlled by the membrane attachment and detachment cycle of Arf6. The intrinsic membrane tethering activity of Arf6 was further found to be significantly inhibited by the presence of membrane-anchored Arf1, suggesting that the tethering-competent Arf6-Arf6 assembly in trans can be prevented by the heterotypic Arf1-Arf6 association in a cis configuration. Taken together, these findings lead us to postulate that self-assemblies of Arf-family small GTPases on lipid bilayers contribute to driving and regulating the tethering events of intracellular membrane trafficking.


2012 ◽  
Vol 40 (6) ◽  
pp. 1426-1432 ◽  
Author(s):  
Carolina Ortiz Sandoval ◽  
Thomas Simmen

Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER–Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.


Author(s):  
Aoife Mairead Kearney ◽  
Amir Rafiq Khan

The small GTPases Rab11, Rab14 and Rab25 regulate membrane trafficking through the recruitment of Rab11 family-interacting proteins (FIPs) to endocytic compartments. FIPs are multi-domain effector proteins that have a highly conserved Rab-binding domain (RBD) at their C-termini. Several structures of complexes of Rab11 with RBDs have previously been determined, including those of Rab11–FIP2 and Rab11–FIP3. In addition, the structures of the Rab14–FIP1 and Rab25–FIP2 complexes have been determined. All of the RBD structures contain a central parallel coiled coil in the RBD that binds to the switch 1 and switch 2 regions of the Rab. Here, the crystal structure of the uncomplexed RBD of FIP2 is presented at 2.3 Å resolution. The structure reveals antiparallel α-helices that associate through polar interactions. These include a remarkable stack of arginine residues within a four-helix bundle in the crystal lattice.


2005 ◽  
Vol 33 (6) ◽  
pp. 1285-1289 ◽  
Author(s):  
V. Haucke

Endocytosis of transmembrane receptors largely occurs via clathrin-coated vesicles that bud from the plasma membrane and deliver their cargo to the endosomal system for recycling or degradation. PIs (phosphoinositides) control the timing and localization of endocytic membrane trafficking by recruiting adaptors and other components of the transport machinery, thereby being part of a coincidence detection system in adaptor-mediated vesicle transport. Activation of organelle- and substrate-specific PI kinases by small GTPases such as Arf (ADP-ribosylation factor) and other factors may result in local changes of PI content, thereby regulating activity-dependent endocytic events including the recycling of synaptic vesicle membranes at nerve terminals. One such example is the PtdIns(4)P 5-kinase-mediated formation of PI(4,5)P2 [PtdIns(4,5)P2], which is required for the exo- and endo-cytic cycling of presynaptic vesicles and secretory granules. Over the last few years, protein X-ray crystallography in combination with biochemical and cell biological assays has been used to investigate the structure and function of many PI-binding proteins, including protein components of the endocytic machinery. These studies have provided molecular insights into the mechanisms by which PI(4,5)P2 recruits and activates adaptor proteins and their binding partners. In this mini-review, I will discuss the pathways of PI(4,5)P2 formation and its interactions with endocytic trafficking adaptors.


2019 ◽  
Vol 218 (6) ◽  
pp. 2035-2050 ◽  
Author(s):  
Yuta Homma ◽  
Riko Kinoshita ◽  
Yoshihiko Kuchitsu ◽  
Paulina S. Wawro ◽  
Soujiro Marubashi ◽  
...  

The Rab family of small GTPases comprises the largest number of proteins (∼60 in mammals) among the regulators of intracellular membrane trafficking, but the precise function of many Rabs and the functional redundancy and diversity of Rabs remain largely unknown. Here, we generated a comprehensive collection of knockout (KO) MDCK cells for the entire Rab family. We knocked out closely related paralogs simultaneously (Rab subfamily knockout) to circumvent functional compensation and found that Rab1A/B and Rab5A/B/C are critical for cell survival and/or growth. In addition, we demonstrated that Rab6-KO cells lack the basement membrane, likely because of the inability to secrete extracellular matrix components. Further analysis revealed the general requirement of Rab6 for secretion of soluble cargos. Transport of transmembrane cargos to the plasma membrane was also significantly delayed in Rab6-KO cells, but the phenotype was relatively mild. Our Rab-KO collection, which shares the same background, would be a valuable resource for analyzing a variety of membrane trafficking events.


Sign in / Sign up

Export Citation Format

Share Document