Phosphoinositide regulation of clathrin-mediated endocytosis

2005 ◽  
Vol 33 (6) ◽  
pp. 1285-1289 ◽  
Author(s):  
V. Haucke

Endocytosis of transmembrane receptors largely occurs via clathrin-coated vesicles that bud from the plasma membrane and deliver their cargo to the endosomal system for recycling or degradation. PIs (phosphoinositides) control the timing and localization of endocytic membrane trafficking by recruiting adaptors and other components of the transport machinery, thereby being part of a coincidence detection system in adaptor-mediated vesicle transport. Activation of organelle- and substrate-specific PI kinases by small GTPases such as Arf (ADP-ribosylation factor) and other factors may result in local changes of PI content, thereby regulating activity-dependent endocytic events including the recycling of synaptic vesicle membranes at nerve terminals. One such example is the PtdIns(4)P 5-kinase-mediated formation of PI(4,5)P2 [PtdIns(4,5)P2], which is required for the exo- and endo-cytic cycling of presynaptic vesicles and secretory granules. Over the last few years, protein X-ray crystallography in combination with biochemical and cell biological assays has been used to investigate the structure and function of many PI-binding proteins, including protein components of the endocytic machinery. These studies have provided molecular insights into the mechanisms by which PI(4,5)P2 recruits and activates adaptor proteins and their binding partners. In this mini-review, I will discuss the pathways of PI(4,5)P2 formation and its interactions with endocytic trafficking adaptors.

2021 ◽  
Vol 22 (5) ◽  
pp. 2776
Author(s):  
Selma Yilmaz Dejgaard ◽  
John F. Presley

Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.


2004 ◽  
Vol 15 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Stéphane Gasman ◽  
Sylvette Chasserot-Golaz ◽  
Magali Malacombe ◽  
Michael Way ◽  
Marie-France Bader

In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42L61 mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.


2006 ◽  
Vol 17 (10) ◽  
pp. 4318-4329 ◽  
Author(s):  
Morten K. Larsen ◽  
Simon Tuck ◽  
Nils J. Færgeman ◽  
Jens Knudsen

The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA–binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA–dependent process during vesicle formation.


2014 ◽  
Vol 112 (2) ◽  
pp. 602-606 ◽  
Author(s):  
Alexander Polster ◽  
Stefano Perni ◽  
Hicham Bichraoui ◽  
Kurt G. Beam

Excitation–contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca2+ channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca2+ channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca2+ channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.


2019 ◽  
Author(s):  
Kazuya Segawa ◽  
Naoki Tamura ◽  
Joji Mima

AbstractMembrane tethering is a highly regulated event that occurs during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, 3a, 4a, 5a, 6a, 7a, 9a, 11a, 27a, and 33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly in a chemically defined reconstitution system. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g., Rab-to-lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab-to-lipid ratio of 1:3,000. Comprehensive reconstitution studies further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a, in particular, synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. Thus, our findings establish that, in the physiological context, homotypic and heterotypic trans-assembly of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.


2005 ◽  
Vol 72 ◽  
pp. 99-108 ◽  
Author(s):  
Jeremy C Simpson ◽  
Arwyn T Jones

Endocytic pathways are highly dynamic gateways for molecules to enter cells. Functionality and specificity is in part controlled by a number of small GTPases called Rabs. In defined cellular locations, Rabs mediate multiple functions in membrane trafficking via their specific interaction with organelle membranes and a host of affector and effector molecules. On endocytic pathways, Rabs have been shown to control the formation of vesicles on the plasma membrane and the downstream delivery of internalized molecules to a number of cellular locations. As numerous Rabs are located to endocytic pathways, an internalized molecule may traverse a number of Rab specific substations or subdomains en route to its final destination. Rabs 5, 21 and 22 have all been localized to the early endocytic pathway and have been shown to share a number of characteristics to merit their segregation into a single functional endocytic group. In this review, we compare experiments that describe similarities and differences in endosome morphology and function that is mediated by their expression in cells.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 263 ◽  
Author(s):  
Abdalla Abdrabou ◽  
Zhixiang Wang

Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.


2019 ◽  
Vol 19 (6) ◽  
pp. 430-448 ◽  
Author(s):  
Khalid Bashir Dar ◽  
Aashiq Hussain Bhat ◽  
Shajrul Amin ◽  
Syed Anjum ◽  
Bilal Ahmad Reshi ◽  
...  

Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.


2011 ◽  
Vol 31 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Mitsunori Fukuda

The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.


Sign in / Sign up

Export Citation Format

Share Document