scholarly journals PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana

2019 ◽  
Author(s):  
Feng Zhang ◽  
Wenqing Tao ◽  
Ruiqi Sun ◽  
Junxia Wang ◽  
Cuiling Li ◽  
...  

AbstractThe development of lateral roots in Arabidopsis thaliana is strongly dependent on signaling directed by the AUXIN RESPONSE FACTOR7 (ARF7), which in turn activates LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, 18, 29 and 33). Here, the product of PRH1, a PR-1 homolog annotated previously as encoding a pathogen-responsive protein, was identified as a target of ARF7-mediated auxin signaling and also as participating in the development of lateral roots. PRH1 was shown to be strongly induced by auxin treatment, and plants lacking a functional copy of PRH1 formed fewer lateral roots. The transcription of PRH1 was controlled by the binding of both ARF7 and LBDs to its promoter region. An interaction was detected between PRH1 and GATA23, a protein which regulates cell identity in lateral root founder cells.Author SummaryIn Arabidopsis thaliana AUXIN RESPONSE FACTOR7 (ARF7)-mediated auxin signaling plays a key role in lateral roots (LRs) development. The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, 18, 29 and 33) act downstream of ARF7-mediated auxin signaling to control LRs formation. Here, the PR-1 homolog PRH1 was identified as a novel target of both ARF7 and LBDs (especially the LBD29) during auxin induced LRs formation, as both ARF7 and LBDs were able to bind to the PRH1 promoter. More interestingly, PRH1 has a physical interaction with GATA23, which has been also reported to be up-regulated by auxin and influences LR formation through its regulation of LR founder cell identity. Whether the interaction between GATA23 and PRH1 affects the stability and/or the activity of either (or both) of these proteins remains an issue to be explored. This study provides improves new insights about how auxin regulates lateral root development.


2020 ◽  
pp. jbc.RA120.014543
Author(s):  
Jordan M. Chapman ◽  
Gloria K. Muday

Flavonoids are a class of specialized metabolites with subclasses including flavonols and anthocyanins, which have unique properties as antioxidants. Flavonoids modulate plant development, but whether and how they impact lateral root development is unclear. We examined potential roles for flavonols in this process using Arabidopsis thaliana mutants with defects in genes encoding key enzymes in flavonoid biosynthesis. We observed the tt4 and fls1 mutants, which produce no flavonols, have increased lateral root emergence. The tt4 root phenotype was reversed by genetic and chemical complementation. To more specifically define the flavonoids involved, we tested an array of flavonoid biosynthetic mutants, eliminating roles for anthocyanins and the flavonols quercetin and isorhamnetin in modulating root development. Instead, two tt7 mutant alleles, with defects in a branchpoint enzyme blocking quercetin biosynthesis, formed reduced numbers of lateral roots, and tt7-2 had elevated levels of kaempferol. Using a flavonol-specific dye, we observed that in the tt7-2 mutant, kaempferol accumulated within lateral root primordia at higher levels than wild-type. These data are consistent with kaempferol, or downstream derivatives, acting as a negative regulator of lateral root emergence. We examined ROS accumulation using ROS-responsive probes and found reduced fluorescence of a superoxide-selective probe within the primordia of tt7-2 compared to wild type, but not in the tt4 mutant, consistent with opposite effects of these mutants on lateral root emergence. These results support a model in which increased level of kaempferol in the lateral root primordia of tt7-2 reduces superoxide concentration and ROS-stimulated lateral root emergence.



PLoS Genetics ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. e1008044 ◽  
Author(s):  
Feng Zhang ◽  
Wenqing Tao ◽  
Ruiqi Sun ◽  
Junxia Wang ◽  
Cuiling Li ◽  
...  


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.



2020 ◽  
Vol 227 (4) ◽  
pp. 1157-1173 ◽  
Author(s):  
Qingqing Xun ◽  
Yunzhe Wu ◽  
Hui Li ◽  
Jinke Chang ◽  
Yang Ou ◽  
...  




Science ◽  
2019 ◽  
Vol 366 (6468) ◽  
pp. 1021-1023 ◽  
Author(s):  
Takashi Soyano ◽  
Yoshikazu Shimoda ◽  
Masayoshi Kawaguchi ◽  
Makoto Hayashi

Legumes develop root nodules in symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia evoke cell division of differentiated cortical cells into root nodule primordia for accommodating bacterial symbionts. In this study, we show that NODULE INCEPTION (NIN), a transcription factor in Lotus japonicus that is essential for initiating cortical cell divisions during nodulation, regulates the gene ASYMMETRIC LEAVES 2-LIKE18/LATERAL ORGAN BOUNDARIES DOMAIN16a (ASL18/LBD16a). Orthologs of ASL18/LBD16a in nonlegume plants are required for lateral root development. Coexpression of ASL18a and the CCAAT box–binding protein Nuclear Factor-Y (NF-Y) subunits, which are also directly targeted by NIN, partially suppressed the nodulation-defective phenotype of L. japonicusdaphne mutants, in which cortical expression of NIN was attenuated. Our results demonstrate that ASL18a and NF-Y together regulate nodule organogenesis. Thus, a lateral root developmental pathway is incorporated downstream of NIN to drive nodule symbiosis.



2012 ◽  
Vol 368 (1-2) ◽  
pp. 591-602 ◽  
Author(s):  
Mauricio Nahuam Chávez-Avilés ◽  
Claudia Lizeth Andrade-Pérez ◽  
Homero Reyes de la Cruz


2013 ◽  
Vol 93 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Shuaizhang Li ◽  
Jiajia Ma ◽  
Pei Liu

Li, S., Ma, J. and Liu, P. 2013. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis. Can. J. Plant Sci. 93: 165–170. Jasmonates, a group of oxylipin phytohormones in angiosperms, play important roles in regulating plant growth and development and in responding to environmental stimuli. AtOPR3, a 12-oxo-phytodienoic acid (OPDA) reductase in Arabidopsis thaliana, has been proven to be vital in catalyzing jasmonate biosynthesis. Here, the temporal and spatial expression of AtOPR3 was investigated by promoter-GUS fusion in A. thaliana. In pOPR3::GUS transgenic plants, the GUS activity was detected in roots, leaves and all floral organs, and was highly induced by MeJA treatment. In addition, the GUS activity was principally detected in the phloem cells of the leaf veins. The sequence of the OPR3 promoter region was predicted to have 49 potential binding sites for transcription factors including the well-known Myc-like basic helix-loop-helix, GATA, MADS, MYB-like and Homeobox proteins. In consistent with an expression of OPR3 in lateral roots, there are more lateral roots in the opr3 mutant plants, in which OPR3 expression is knocking-out. In addition, the involvement of auxin biosynthesis in JA-regulated lateral root development is implied by our observation that the transcripts of ASA1, a gene involved in auxin biosynthesis, are decreased in opr3 plants.





Sign in / Sign up

Export Citation Format

Share Document