scholarly journals Characteristic sounds facilitate object search in real-life scenes

2019 ◽  
Author(s):  
Daria Kvasova ◽  
Laia Garcia-Vernet ◽  
Salvador Soto-Faraco

AbstractReal-world multisensory events do not only provide temporally and spatially correlated information, but also semantic correspondences about object identity. Semantically consistent sounds can enhance visual detection, identification and search performance, but these effects are always demonstrated in simple and stereotyped displays that lack ecological validity. In order to address identity-based crossmodal relationships in real world scenarios, we designed a visual search task using complex, dynamic scenes. Participants searched objects in video clips from real life scenes with background sounds. Auditory cues embedded in the background sounds could be target-consistent, distracter-consistent, neutral and no sound (just background noise). We found that characteristic sounds enhance visual search of relevant objects in natural scenes but fail to increase the salience of irrelevant distracters. Our findings generalize previous results on object-based crossmodal interactions with simple stimuli and shed light upon how audio-visual semantically congruent relationships play out in real life contexts.


2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.



Author(s):  
Gwendolyn Rehrig ◽  
Reese A. Cullimore ◽  
John M. Henderson ◽  
Fernanda Ferreira

Abstract According to the Gricean Maxim of Quantity, speakers provide the amount of information listeners require to correctly interpret an utterance, and no more (Grice in Logic and conversation, 1975). However, speakers do tend to violate the Maxim of Quantity often, especially when the redundant information improves reference precision (Degen et al. in Psychol Rev 127(4):591–621, 2020). Redundant (non-contrastive) information may facilitate real-world search if it narrows the spatial scope under consideration, or improves target template specificity. The current study investigated whether non-contrastive modifiers that improve reference precision facilitate visual search in real-world scenes. In two visual search experiments, we compared search performance when perceptually relevant, but non-contrastive modifiers were included in the search instruction. Participants (NExp. 1 = 48, NExp. 2 = 48) searched for a unique target object following a search instruction that contained either no modifier, a location modifier (Experiment 1: on the top left, Experiment 2: on the shelf), or a color modifier (the black lamp). In Experiment 1 only, the target was located faster when the verbal instruction included either modifier, and there was an overall benefit of color modifiers in a combined analysis for scenes and conditions common to both experiments. The results suggest that violations of the Maxim of Quantity can facilitate search when the violations include task-relevant information that either augments the target template or constrains the search space, and when at least one modifier provides a highly reliable cue. Consistent with Degen et al. (2020), we conclude that listeners benefit from non-contrastive information that improves reference precision, and engage in rational reference comprehension. Significance statement This study investigated whether providing more information than someone needs to find an object in a photograph helps them to find that object more easily, even though it means they need to interpret a more complicated sentence. Before searching a scene, participants were either given information about where the object would be located in the scene, what color the object was, or were only told what object to search for. The results showed that providing additional information helped participants locate an object in an image more easily only when at least one piece of information communicated what part of the scene the object was in, which suggests that more information can be beneficial as long as that information is specific and helps the recipient achieve a goal. We conclude that people will pay attention to redundant information when it supports their task. In practice, our results suggest that instructions in other contexts (e.g., real-world navigation, using a smartphone app, prescription instructions, etc.) can benefit from the inclusion of what appears to be redundant information.



2020 ◽  
Author(s):  
Nir Shalev ◽  
Sage Boettcher ◽  
Hannah Wilkinson ◽  
Gaia Scerif ◽  
Anna C. Nobre

It is believed that children have difficulties in guiding attention while facing distraction. However, developmental accounts of spatial attention rely on traditional search designs using static displays. In real life, dynamic environments can embed regularities that afford anticipation and benefit performance. We developed a dynamic visual-search task to test the ability of children to benefit from spatio-temporal regularities to detect goal-relevant targets appearing within an extended dynamic context amidst irrelevant distracting stimuli. We compared children and adults in detecting predictable vs. unpredictable targets fading in and out among competing distracting stimuli. While overall search performance was poorer in children, both groups detected more predictable targets. This effect was confined to task-relevant information. Additionally, we report how predictions are related to individual differences in attention. Altogether, our results indicate a striking capacity of prediction-led guidance towards task-relevant information in dynamic environments, refining traditional views about poor goal-driven attention in childhood.



2020 ◽  
Vol 10 (12) ◽  
pp. 927
Author(s):  
Marian Sauter ◽  
Maximilian Stefani ◽  
Wolfgang Mack

An overwhelming majority of studies on visual search and selective attention were conducted using computer screens. There are arguably shortcomings in transferring knowledge from computer-based studies to real-world search behavior as findings are based on viewing static pictures on computer screens. This does not go well with the dynamic and interactive nature of vision in the real world. It is crucial to take visual search research to the real world in order to study everyday visual search processes. The aim of the present study was to develop an interactive search paradigm that can serve as a “bridge” between classical computerized search and everyday interactive search. We based our search paradigm on simple LEGO® bricks arranged on tabletop trays to ensure comparability with classical computerized visual search studies while providing room for easily increasing the complexity of the search environment. We found that targets were grasped slower when there were more distractors (Experiment 1) and there were sizable differences between various search conditions (Experiment 2), largely in line with classical visual search research and revealing similarities to research in natural scenes. Therefore, our paradigm can be seen as a valuable asset complementing visual search research in an environment between computerized search and everyday search.



2019 ◽  
Vol 50 (2) ◽  
pp. 67-79 ◽  
Author(s):  
Michael J. Marks ◽  
Tara M. Young ◽  
Yuliana Zaikman

Abstract. The sexual double standard (SDS) has traditionally been studied by examining evaluations of hypothetical targets. Although much knowledge has been gained regarding the SDS by using this methodology, the literature thus far has suffered from a lack of ecological validity. The goal of the present study was to determine whether the SDS emerged in evaluations of participants’ real-life friends and acquaintances. Participants ( n = 4,455) evaluated a single, randomly assigned male or female friend or acquaintance whose sexual history they were familiar with. Women were evaluated more negatively as their number of sexual partners increased, whereas number of partners was not related to evaluations of men. The SDS was not moderated by the closeness of the relationship between the participant and the target person.



2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Luis I. Gómez-Jordana ◽  
James Stafford ◽  
C. (Lieke) E. Peper ◽  
Cathy M. Craig

Studying freezing of gait (FOG) in the lab has proven problematic. This has primarily been due to the difficulty in designing experimental setups that maintain high levels of ecological validity whilst also permitting sufficient levels of experimental control. To help overcome these challenges, we have developed a virtual reality (VR) environment with virtual doorways, a situation known to illicit FOG in real life. To examine the validity of this VR environment, an experiment was conducted, and the results were compared to a previous “real-world” experiment. A group of healthy controls (N = 10) and a group of idiopathic Parkinson disease (PD) patients without any FOG episodes (N = 6) and with a history of freezing (PD-f, N = 4) walked under three different virtual conditions (no door, narrow doorway (100% of shoulder width) and standard doorway (125% of shoulder width)). The results were similar to those obtained in the real-world setting. Virtual doorways reduced step length and velocity while increasing general gait variability. The PD-f group always walked slower, with a smaller step length, and showed the largest increases in gait variability. The narrow doorway induced FOG in 66% of the trials, while the standard doorway caused FOG in 29% of the trials. Our results closely mirrored those obtained with real doors. In short, this methodology provides a safe, personalized yet adequately controlled means to examine FOG in Parkinson’s patients, along with possible interventions.



2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Alejandro Lleras ◽  
Zhiyuan Wang ◽  
Anna Madison ◽  
Simona Buetti

Recently, Wang, Buetti and Lleras (2017) developed an equation to predict search performance in heterogeneous visual search scenes (i.e., multiple types of non-target objects simultaneously present) based on parameters observed when participants perform search in homogeneous scenes (i.e., when all non-target objects are identical to one another). The equation was based on a computational model where every item in the display is processed with unlimited capacity and independently of one another, with the goal of determining whether the item is likely to be a target or not. The model was tested in two experiments using real-world objects. Here, we extend those findings by testing the predictive power of the equation to simpler objects. Further, we compare the model’s performance under two stimulus arrangements: spatially-intermixed (items randomly placed around the scene) and spatially-segregated displays (identical items presented near each other). This comparison allowed us to isolate and quantify the facilitatory effect of processing displays that contain identical items (homogeneity facilitation), a factor that improves performance in visual search above-and-beyond target-distractor dissimilarity. The results suggest that homogeneity facilitation effects in search arise from local item-to-item interaction (rather than by rejecting items as “groups”) and that the strength of those interactions might be determined by stimulus complexity (with simpler stimuli producing stronger interactions and thus, stronger homogeneity facilitation effects).



2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhiyuan Wang ◽  
Simona Buetti ◽  
Alejandro Lleras

Previous work in our lab has demonstrated that efficient visual search with a fixed target has a reaction time by set size function that is best characterized by logarithmic curves. Further, the steepness of these logarithmic curves is determined by the similarity between target and distractor items (Buetti et al., 2016). A theoretical account of these findings was proposed, namely that a parallel, unlimited capacity, exhaustive processing architecture is underlying such data. Here, we conducted two experiments to expand these findings to a set of real-world stimuli, in both homogeneous and heterogeneous search displays. We used computational simulations of this architecture to identify a way to predict RT performance in heterogeneous search using parameters estimated from homogeneous search data. Further, by examining the systematic deviation from our predictions in the observed data, we found evidence that early visual processing for individual items is not independent. Instead, items in homogeneous displays seemed to facilitate each other’s processing by a multiplicative factor. These results challenge previous accounts of heterogeneity effects in visual search, and demonstrate the explanatory and predictive power of an approach that combines computational simulations and behavioral data to better understand performance in visual search.



2019 ◽  
Author(s):  
Bria Long ◽  
Mariko Moher ◽  
Susan Carey ◽  
Talia Konkle

By adulthood, animacy and object size jointly structure neural responses in visual cortex and influence perceptual similarity computations. Here, we take a first step in asking about the development of these aspects of cognitive architecture by probing whether animacy and object size are reflected in perceptual similarity computations by the preschool years. We used visual search performance as an index of perceptual similarity, as research with adults suggests search is slower when distractors are perceptually similar to the target. Preschoolers found target pictures more quickly when targets differed from distractor pictures in either animacy (Experiment 1) or in real-world size (Experiment 2; the pictures themselves were all the same size), versus when they do not. Taken together, these results suggest that the visual system has abstracted perceptual features for animates vs. inanimates and big vs. small objects as classes by the preschool years and call for further research exploring the development of these perceptual representations and their consequences for neural organization in childhood.



2021 ◽  
Author(s):  
Thomas L. Botch ◽  
Brenda D. Garcia ◽  
Yeo Bi Choi ◽  
Caroline E. Robertson

Visual search is a universal human activity in naturalistic environments. Traditionally, visual search is investigated under tightly controlled conditions, where head-restricted participants locate a minimalistic target in a cluttered array presented on a computer screen. Do classic findings of visual search extend to naturalistic settings, where participants actively explore complex, real-world scenes? Here, we leverage advances in virtual reality (VR) technology to relate individual differences in classic visual search paradigms to naturalistic search behavior. In a naturalistic visual search task, participants looked for an object within their environment via a combination of head-turns and eye-movements using a head-mounted display. Then, in a classic visual search task, participants searched for a target within a simple array of colored letters using only eye-movements. We tested how set size, a property known to limit visual search within computer displays, predicts the efficiency of search behavior inside immersive, real-world scenes that vary in levels of visual clutter. We found that participants' search performance was impacted by the level of visual clutter within real-world scenes. Critically, we also observed that individual differences in visual search efficiency in classic search predicted efficiency in real-world search, but only when the comparison was limited to the forward-facing field of view for real-world search. These results demonstrate that set size is a reliable predictor of individual performance across computer-based and active, real-world visual search behavior.



Sign in / Sign up

Export Citation Format

Share Document