scholarly journals The value of what’s to come: neural mechanisms coupling prediction error and reward anticipation

2019 ◽  
Author(s):  
Kiyohito Iigaya ◽  
Tobias U. Hauser ◽  
Zeb Kurth-Nelson ◽  
John P. O’Doherty ◽  
Peter Dayan ◽  
...  

Having something to look forward to is a keystone of well-being. Anticipation of a future reward, like an upcoming vacation, can often be more gratifying than the very experience itself. Theories of anticipation have described how it induces behaviors ranging from beneficial information-seeking through to harmful addiction. However, it remains unclear how neural systems compute an attractive value from anticipation, instead of from the reward itself. To address this gap, we administered a decision-making task to human participants that allowed us to analyze brain activity during receipt of information predictive of future pleasant outcomes. Using a computational model of anticipatory value that captures participants’ decisions, we show that an anticipatory value signal is orchestrated by influences from three brain regions. Ventromedial prefrontal cortex (vmPFC) tracks the value of anticipation; dopaminergic midbrain responds to information that enhances anticipation, while sustained hippocampal activity provides a functional coupling between these regions. This coordinating function of the hippocampus is consistent with its known role in episodic future thinking. Our findings shed new light on the neural underpinnings of anticipation’s influence over decision-making, while also unifying a range of phenomena associated with risk and time-delay preference.

2020 ◽  
Vol 6 (25) ◽  
pp. eaba3828 ◽  
Author(s):  
Kiyohito Iigaya ◽  
Tobias U. Hauser ◽  
Zeb Kurth-Nelson ◽  
John P. O’Doherty ◽  
Peter Dayan ◽  
...  

Having something to look forward to is a keystone of well-being. Anticipation of future reward, such as an upcoming vacation, can often be more gratifying than the experience itself. Theories suggest the utility of anticipation underpins various behaviors, ranging from beneficial information-seeking to harmful addiction. However, how neural systems compute anticipatory utility remains unclear. We analyzed the brain activity of human participants as they performed a task involving choosing whether to receive information predictive of future pleasant outcomes. Using a computational model, we show three brain regions orchestrate anticipatory utility. Specifically, ventromedial prefrontal cortex tracks the value of anticipatory utility, dopaminergic midbrain correlates with information that enhances anticipation, while sustained hippocampal activity mediates a functional coupling between these regions. Our findings suggest a previously unidentified neural underpinning for anticipation’s influence over decision-making and unify a range of phenomena associated with risk and time-delay preference.


2021 ◽  
Author(s):  
Mathilde Salagnon ◽  
Sandrine Cremona ◽  
Marc Joliot ◽  
Francesco d'Errico ◽  
Emmanuel Mellet

It has been suggested that engraved abstract patterns dating from the Middle and Lower Palaeolithic served as means of representation and communication. Identifying the brain regions involved in visual processing of these engravings can provide insights into their function. In this study, brain activity was measured during perception of the earliest known Palaeolithic engraved patterns and compared to natural patterns mimicking human-made engravings. Participants were asked to categorise marks as being intentionally made by humans or due to natural processes (e.g. erosion, root etching). To simulate the putative familiarity of our ancestors with the marks, the responses of expert archaeologists and control participants were compared, allowing characterisation of the effect of previous knowledge on both behaviour and brain activity in perception of the marks. Besides a set of regions common to both groups and involved in visual analysis and decision-making, the experts exhibited greater activity in the inferior part of the lateral occipital cortex, ventral occipitotemporal cortex, and medial thalamic regions. These results are consistent with those reported in visual expertise studies, and confirm the importance of the integrative visual areas in the perception of the earliest abstract engravings. The attribution of a natural rather than human origin to the marks elicited greater activity in the salience network in both groups, reflecting the uncertainty and ambiguity in the perception of, and decision-making for, natural patterns. The activation of the salience network might also be related to the process at work in the attribution of an intention to the marks. The primary visual area was not specifically involved in the visual processing of engravings, which argued against its central role in the emergence of engraving production.


2021 ◽  
Author(s):  
Esther E. Palacios-Barrios ◽  
Jamie L. Hanson ◽  
Kelly R. Barry ◽  
Dustin Albert ◽  
Stuart F. White ◽  
...  

AbstractLower family income during childhood is related to increased rates of adolescent depression, though the specific mechanisms are poorly understood. Evidence suggests that individuals with depression demonstrate hypoactivation in brain regions involved in reward learning and decision-making processes (e.g., portions of the prefrontal cortex). Separately, lower family income has been associated with neural alterations in similar regions. We examined associations between family income, depression, and brain activity during a reward learning and decision-making fMRI task in a sample of adolescents (full n=94; usable n=78; mean age=15.4 years). We identified neural regions representing 1) expected value (EV), the learned subjective value of an object, and 2) prediction error, the difference between EV and the actual outcome received. Regions of interest related to reward learning were examined in connection to childhood family income and parent-reported adolescent depressive symptoms. As hypothesized, lower activity in the subgenual anterior cingulate (sACC) for EV in response to approach stimuli was associated with lower childhood family income, as well as greater symptoms of depression measured one-year after the neuroimaging session. These results are consistent with the hypothesis that lower early family income leads to disruptions in reward and decision-making brain circuitry, which leads to adolescent depression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Guozhen Ye ◽  
Yanchi Liu ◽  
Yilong Kong ◽  
...  

AbstractMorality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


2020 ◽  
Author(s):  
Melissa Hebscher ◽  
James E. Kragel ◽  
Thorsten Kahnt ◽  
Joel L. Voss

AbstractEpisodic memory involves the reinstatement of distributed patterns of brain activity present when events were initially experienced. The hippocampus is thought to coordinate reinstatement via its interactions with a network of brain regions, but this hypothesis has not been causally tested in humans. The current study directly tested the involvement of the hippocampal network in reinstatement using network-targeted noninvasive stimulation. We measured reinstatement of multi-voxel patterns of fMRI activity during encoding and retrieval of naturalistic video clips depicting everyday activities. Reinstatement of video-specific activity patterns was robust in posterior-parietal and occipital areas previously implicated in event reinstatement. Theta-burst stimulation targeting the hippocampal network increased videospecific reinstatement of fMRI activity patterns in occipital cortex and improved memory accuracy relative to stimulation of a control out-of-network location. Furthermore, stimulation targeting the hippocampal network influenced the trial-by-trial relationship between hippocampal activity during encoding and later reinstatement in occipital cortex. These findings implicate the hippocampal network in the reinstatement of spatially distributed patterns of event-specific activity, and identify a role for the hippocampus in encoding complex naturalistic events that later undergo cortical reinstatement.


2021 ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Yanchi Liu ◽  
Lei Mo

Abstract Morality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.


2021 ◽  
Author(s):  
Kaoru Nashiro ◽  
Jungwon Min ◽  
Hyun Joo Yoo ◽  
Christine Cho ◽  
Shelby L Bachman ◽  
...  

Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance brain function? To test this possibility, we randomly assigned 106 young adult participants to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain activity during rest and during regulating emotion. In this healthy cohort, the two conditions did not differentially affect anxiety, depression or mood. However, the Osc+ intervention increased low-frequency heart rate variability and increased brain oscillatory dynamics and functional connectivity in emotion-related resting-state networks. It also increased down-regulation of activity in somatosensory brain regions during an emotion regulation task. The Osc- intervention did not have these effects. These findings indicate that heart rate oscillatory activity not only reflects the current state of regulatory brain systems but also changes how the brain operates beyond the moments of high oscillatory activity.


2019 ◽  
Vol 14 (9) ◽  
pp. 957-966 ◽  
Author(s):  
Danielle Cosme ◽  
Rita M Ludwig ◽  
Elliot T Berkman

Abstract Self-control is the process of favoring abstract, distal goals over concrete, proximal goals during decision-making and is an important factor in health and well-being. We directly compare two prominent neurocognitive models of human self-control with the goal of identifying which, if either, best describes behavioral and neural data of dietary decisions in a large sample of overweight and obese adults motivated to eat more healthfully. We extracted trial-by-trial estimates of neural activity during incentive-compatible choice from three brain regions implicated in self-control, dorsolateral prefrontal cortex, ventral striatum and ventromedial prefrontal cortex and assessed evidence for the dual-process and value-based choice models of self-control using multilevel modeling. Model comparison tests revealed that the value-based choice model outperformed the dual-process model and best fit the observed data. These results advance scientific knowledge of the neurobiological mechanisms underlying self-control-relevant decision-making and are consistent with a value-based choice model of self-control.


2019 ◽  
Author(s):  
Danielle Cosme ◽  
Rita M. Ludwig ◽  
Elliot Berkman

Self-control is the process of favoring abstract, distal goals over concrete, proximal goals during decision making, and is an important factor in health and well-being. We directly compare two prominent neurocognitive models of human self-control with the goal of identifying which, if either, best describes behavioral and neural data of dietary decisions in a large sample of overweight and obese adults motivated to eat more healthfully. We extracted trial-by-trial estimates of neural activity during incentive-compatible choice from three brain regions implicated in self-control, dorsolateral prefrontal cortex, ventral striatum, and ventromedial prefrontal cortex, and assessed evidence for the dual-process and value-based choice models of self-control using multilevel modeling. Model comparison tests revealed that the value-based choice model outperformed the dual-process model, and best fit the observed data. These results advance scientific knowledge of the neurobiological mechanisms underlying self-control relevant decision making and are consistent with a value-based choice model of self-control.


Sign in / Sign up

Export Citation Format

Share Document