scholarly journals Trust me if you can – neurophysiological insights on the influence of consumer impulsiveness on trustworthiness evaluations in online settings

2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.

2021 ◽  
Author(s):  
Esther E. Palacios-Barrios ◽  
Jamie L. Hanson ◽  
Kelly R. Barry ◽  
Dustin Albert ◽  
Stuart F. White ◽  
...  

AbstractLower family income during childhood is related to increased rates of adolescent depression, though the specific mechanisms are poorly understood. Evidence suggests that individuals with depression demonstrate hypoactivation in brain regions involved in reward learning and decision-making processes (e.g., portions of the prefrontal cortex). Separately, lower family income has been associated with neural alterations in similar regions. We examined associations between family income, depression, and brain activity during a reward learning and decision-making fMRI task in a sample of adolescents (full n=94; usable n=78; mean age=15.4 years). We identified neural regions representing 1) expected value (EV), the learned subjective value of an object, and 2) prediction error, the difference between EV and the actual outcome received. Regions of interest related to reward learning were examined in connection to childhood family income and parent-reported adolescent depressive symptoms. As hypothesized, lower activity in the subgenual anterior cingulate (sACC) for EV in response to approach stimuli was associated with lower childhood family income, as well as greater symptoms of depression measured one-year after the neuroimaging session. These results are consistent with the hypothesis that lower early family income leads to disruptions in reward and decision-making brain circuitry, which leads to adolescent depression.


2020 ◽  
Author(s):  
Ranjita Poudel ◽  
Michael C. Riedel ◽  
Taylor Salo ◽  
Jessica S. Flannery ◽  
Lauren D. Hill-Bowen ◽  
...  

ABSTRACTTwo often-studied forms of uncertain decision-making (DM) are risky-DM (outcome probabilities known) and ambiguous-DM (outcome probabilities unknown). While DM in general is associated with activation of several brain regions, previous neuroimaging efforts suggest a dissociation between activity linked with risky and ambiguous choices. However, the common and distinct neurobiological correlates associated with risky- and ambiguous-DM, as well as their specificity when compared to perceptual-DM (as a ‘control condition’), remains to be clarified. We conducted multiple meta-analyses on neuroimaging results from 151 studies to characterize common and domain-specific brain activity during risky-, ambiguous-, and perceptual-DM. When considering all DM tasks, convergent activity was observed in brain regions considered to be consituents of the canonical salience, valuation, and executive control networks. When considering subgroups of studies, risky-DM (vs. perceptual-DM) was linked with convergent activity in the striatum and anterior cingulate cortex (ACC), regions associated with reward-related processes (determined by objective functional decoding). When considering ambiguous-DM (vs. perceptual-DM), activity convergence was observed in the lateral prefrontal cortex and insula, regions implicated in affectively-neutral mental processes (e.g., cognitive control and behavioral responding; determined by functional decoding). An exploratory meta-analysis comparing brain activity between substance users and non-users during risky-DM identified reduced convergent activity among users in the striatum, cingulate, and thalamus. Taken together, these findings suggest a dissociation of brain regions linked with risky- and ambiguous-DM reflecting possible differential functionality and highlight brain alterations potentially contributing to poor decision-making in the context of substance use disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aldo Alberto Conti ◽  
Alexander Mario Baldacchino

Introduction: Impairments in the multifaceted neuropsychological construct of cognitive impulsivity are a main feature of chronic tobacco smokers. According to the literature, these cognitive impairments are relevant for the initiation and maintenance of the smoking behavior. However, the neuroanatomical correlates of cognitive impulsivity in chronic smokers remain under-investigated.Methods: A sample of 28 chronic smokers (mean age = 28 years) not affected by polysubstance dependence and 24 matched non-smoker controls was recruited. Voxel Based Morphometry (VBM) was employed to assess Gray Matter (GM) volume differences between smokers and non-smokers. The relationships between GM volume and behavioral manifestations of impulsive choices (5 trial adjusting delay discounting task, ADT-5) and risky decision making (Cambridge Gambling Task, CGT) were also investigated.Results: VBM results revealed GM volume reductions in cortical and striatal brain regions of chronic smokers compared to non-smokers. Additionally, smokers showed heightened impulsive choices (p &lt; 0.01, Cohen's f = 0.50) and a riskier decision- making process (p &lt; 0.01, Cohen's f = 0.40) compared to non-smokers. GM volume reductions in the left Anterior Cingulate Cortex (ACC) correlated with impaired impulsive and risky choices, while GM volume reductions in the left Ventrolateral Prefrontal Cortex (VLPFC) and Caudate correlated with heightened impulsive choices. Reduced GM volume in the left VLPFC correlated with younger age at smoking initiation (mean = 16 years).Conclusion: Smokers displayed significant GM volume reductions and related cognitive impulsivity impairments compared to non-smoker individuals. Longitudinal studies would be required to assess whether these impairments underline neurocognitive endophenotypes or if they are a consequence of tobacco exposure on the adolescent brain.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Nobuaki Mizuguchi ◽  
Shintaro Uehara ◽  
Satoshi Hirose ◽  
Shinji Yamamoto ◽  
Eiichi Naito

Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Jian Guo ◽  
Ning Chen ◽  
Muke Zhou ◽  
Pian Wang ◽  
Li He

Background: Transient ischemic attack (TIA) can increase the risk of some neurologic dysfunctions, of which the mechanism remains unclear. Resting-state functional MRI (rfMRI) is suggested to be a valuable tool to study the relation between spontaneous brain activity and behavioral performance. However, little is known about whether the local synchronization of spontaneous neural activity is altered in TIA patients. The purpose of this study is to detect differences in regional spontaneous activities throughout the whole brain between TIAs and normal controls. Methods: Twenty one TIA patients suffered an ischemic event in the right hemisphere and 21 healthy volunteers were enrolled in the study. All subjects were investigated using cognitive tests and rfMRI. The regional homogeneity (ReHo) was calculate and compared between two groups. Then a correlation analysis was performed to explore the relationship between ReHo values of brain regions showing abnormal resting-state properties and clinical variables in TIA group. Results: Compared with controls, TIA patients exhibited decreased ReHo in right dorsolateral prefrontal cortex (DLPFC), right inferior prefrontal gyrus, right ventral anterior cingulate cortex and right dorsal posterior cingular cortex. Moreover, the mean ReHo in right DLPFC and right inferior prefrontal gyrus were significantly correlated with MoCA in TIA patients. Conclusions: Neural activity in the resting state is changed in patients with TIA. The positive correlation between regional homogeneity of rfMRI and cognition suggests that ReHo may be a promising tool to better our understanding of the neurobiological consequences of TIA.


2020 ◽  
Author(s):  
Irena T Schouwenaars ◽  
Miek J de Dreu ◽  
Geert-Jan M Rutten ◽  
Nick F Ramsey ◽  
Johan M Jansma

Abstract Background The main goal of this functional MRI (fMRI) study was to examine whether cognitive deficits in glioma patients prior to treatment are associated with abnormal brain activity in either the central executive network (CEN) or default mode network (DMN). Methods Forty-six glioma patients, and 23 group-matched healthy controls (HCs) participated in this fMRI experiment, performing an N-back task. Additionally, cognitive profiles of patients were evaluated outside the scanner. A region of interest–based analysis was used to compare brain activity in CEN and DMN between groups. Post hoc analyses were performed to evaluate differences between low-grade glioma (LGG) and high-grade glioma (HGG) patients. Results In-scanner performance was lower in glioma patients compared to HCs. Neuropsychological testing indicated cognitive impairment in LGG as well as HGG patients. fMRI results revealed normal CEN activation in glioma patients, whereas patients showed reduced DMN deactivation compared to HCs. Brain activity levels did not differ between LGG and HGG patients. Conclusions Our study suggests that cognitive deficits in glioma patients prior to treatment are associated with reduced responsiveness of the DMN, but not with abnormal CEN activation. These results suggest that cognitive deficits in glioma patients reflect a reduced capacity to achieve a brain state necessary for normal cognitive performance, rather than abnormal functioning of executive brain regions. Solely focusing on increases in brain activity may well be insufficient if we want to understand the underlying brain mechanism of cognitive impairments in patients, as our results indicate the importance of assessing deactivation.


2020 ◽  
Vol 32 (6) ◽  
pp. 1026-1045 ◽  
Author(s):  
Dina R. Dajani ◽  
Paola Odriozola ◽  
Melanie Winters ◽  
Willa Voorhies ◽  
Selene Marcano ◽  
...  

Cognitive flexibility, the ability to appropriately adjust behavior in a changing environment, has been challenging to operationalize and validate in cognitive neuroscience studies. Here, we investigate neural activation and directed functional connectivity underlying cognitive flexibility using an fMRI-adapted version of the Flexible Item Selection Task (FIST) in adults ( n = 32, ages 19–46 years). The fMRI-adapted FIST was reliable, showed comparable performance to the computer-based version of the task, and produced robust activation in frontoparietal, anterior cingulate, insular, and subcortical regions. During flexibility trials, participants directly engaged the left inferior frontal junction, which influenced activity in other cortical and subcortical regions. The strength of intrinsic functional connectivity between select brain regions was related to individual differences in performance on the FIST, but there was also significant individual variability in functional network topography supporting cognitive flexibility. Taken together, these results suggest that the FIST is a valid measure of cognitive flexibility, which relies on computations within a broad corticosubcortical network driven by inferior frontal junction engagement.


Sign in / Sign up

Export Citation Format

Share Document