scholarly journals Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms and pharmacodynamics in Alzheimer’s disease

2019 ◽  
Author(s):  
Leon Stefanovski ◽  
Paul Triebkorn ◽  
Andreas Spiegler ◽  
Margarita-Arimatea Diaz-Cortes ◽  
Ana Solodkin ◽  
...  

AbstractIntroductionWhile the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer’s disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modelling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment.MethodsThe Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, N=8) and Alzheimer’s Disease (AD, N=10) and in age-matched healthy controls (HC, N=15) using data from ADNI-3 data base (http://adni.lni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional inhibition, leading to disinhibition and hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG).ResultsKnown empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains.DiscussionWe demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains.

2019 ◽  
Author(s):  
Ying Sheng ◽  
Chiung-Yu Huang ◽  
Siarhei Lobach ◽  
Lydia Zablotska ◽  
Iryna Lobach ◽  
...  

ABSTRACTLarge-scale genome-wide analyses scans provide massive volumes of genetic variants on large number of cases and controls that can be used to estimate the genetic effects. Yet, the sets of non-genetic variables available in publicly available databases are often brief. It is known that omitting a continuous variable from a logistic regression model can result in biased estimates of odds ratios (OR) (e.g., Gail et al (1984), Neuhaus et al (1993), Hauck et al (1991), Zeger et al (1988)). We are interested to assess what information is needed to recover the bias in the OR estimate of genotype due to omitting a continuous variable in settings when the actual values of the omitted variable are not available. We derive two estimating procedures that can recover the degree of bias based on a conditional density of the omitted variable or knowing the distribution of the omitted variable. Importantly, our derivations show that omitting a continuous variable can result in either under- or over-estimation of the genetic effects. We performed extensive simulation studies to examine bias, variability, false positive rate, and power in the model that omits a continuous variable. We show the application to two genome-wide studies of Alzheimer’s disease.Data Availability StatementThe data that support the findings of this study are openly available in the Database of Genotypes and Phenotypes at [https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000372.v1.p1], reference number [phs000372.v1.p1] and at the Alzheimer’s Disease Neuroimaging Initiative http://adni.loni.usc.edu/.


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


2021 ◽  
Author(s):  
Kyoungwon Baik ◽  
Jin‐Ju Yang ◽  
Jin Ho Jung ◽  
Yang Hyun Lee ◽  
Seok Jong Chung ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Adam S. Bernstein ◽  
Steven Z. Rapcsak ◽  
Michael Hornberger ◽  
Manojkumar Saranathan ◽  

Background: Increasing evidence suggests that thalamic nuclei may atrophy in Alzheimer’s disease (AD). We hypothesized that there will be significant atrophy of limbic thalamic nuclei associated with declining memory and cognition across the AD continuum. Objective: The objective of this work was to characterize volume differences in thalamic nuclei in subjects with early and late mild cognitive impairment (MCI) as well as AD when compared to healthy control (HC) subjects using a novel MRI-based thalamic segmentation technique (THOMAS). Methods: MPRAGE data from the ADNI database were used in this study (n = 540). Healthy control (n = 125), early MCI (n = 212), late MCI (n = 114), and AD subjects (n = 89) were selected, and their MRI data were parcellated to determine the volumes of 11 thalamic nuclei for each subject. Volumes across the different clinical subgroups were compared using ANCOVA. Results: There were significant differences in thalamic nuclei volumes between HC, late MCI, and AD subjects. The anteroventral, mediodorsal, pulvinar, medial geniculate, and centromedian nuclei were significantly smaller in subjects with late MCI and AD when compared to HC subjects. Furthermore, the mediodorsal, pulvinar, and medial geniculate nuclei were significantly smaller in early MCI when compared to HC subjects. Conclusion: This work highlights nucleus specific atrophy within the thalamus in subjects with early and late MCI and AD. This is consistent with the hypothesis that memory and cognitive changes in AD are mediated by damage to a large-scale integrated neural network that extends beyond the medial temporal lobes.


2018 ◽  
Vol 29 (10) ◽  
pp. 4291-4302 ◽  
Author(s):  
Hang-Rai Kim ◽  
Peter Lee ◽  
Sang Won Seo ◽  
Jee Hoon Roh ◽  
Minyoung Oh ◽  
...  

Abstract Tau and amyloid β (Aβ), 2 key pathogenic proteins in Alzheimer’s disease (AD), reportedly spread throughout the brain as the disease progresses. Models of how these pathogenic proteins spread from affected to unaffected areas had been proposed based on the observation that these proteins could transmit to other regions either through neural fibers (transneuronal spread model) or through extracellular space (local spread model). In this study, we modeled the spread of tau and Aβ using a graph theoretical approach based on resting-state functional magnetic resonance imaging. We tested whether these models predict the distribution of tau and Aβ in the brains of AD spectrum patients. To assess the models’ performance, we calculated spatial correlation between the model-predicted map and the actual map from tau and amyloid positron emission tomography. The transneuronal spread model predicted the distribution of tau and Aβ deposition with significantly higher accuracy than the local spread model. Compared with tau, the local spread model also predicted a comparable portion of Aβ deposition. These findings provide evidence of transneuronal spread of AD pathogenic proteins in a large-scale brain network and furthermore suggest different contributions of spread models for tau and Aβ in AD.


2020 ◽  
Author(s):  
Jafar Zamani ◽  
Ali Sadr ◽  
Amir-Homayoun Javadi

AbstractBackgroundAlzheimer’s disease (AD) is a neurodegenerative disease that leads to anatomical atrophy, as evidenced by magnetic resonance imaging (MRI). Automated segmentation methods are developed to help with the segmentation of different brain areas. However, their reliability has yet to be fully investigated. To have a more comprehensive understanding of the distribution of changes in AD, as well as investigating the reliability of different segmentation methods, in this study we compared volumes of cortical and subcortical brain segments, using automated segmentation methods in more than 60 areas between AD and healthy controls (HC).MethodsA total of 44 MRI images (22 AD and 22 HC, 50% females) were taken from the minimal interval resonance imaging in Alzheimer’s disease (MIRIAD) dataset. HIPS, volBrain, CAT and BrainSuite segmentation methods were used for the subfields of hippocampus, and the rest of the brain.ResultsWhile HIPS, volBrain and CAT showed strong conformity with the past literature, BrainSuite misclassified several brain areas. Additionally, the volume of the brain areas that successfully discriminated between AD and HC showed a correlation with mini mental state examination (MMSE) scores. The two methods of volBrain and CAT showed a very strong correlation. These two methods, however, did not correlate with BrainSuite.ConclusionOur results showed that automated segmentation methods HIPS, volBrain and CAT can be used in the classification of AD and HC. This is an indication that such methods can be used to inform researchers and clinicians of underlying mechanisms and progression of AD.


Sign in / Sign up

Export Citation Format

Share Document