scholarly journals Foundress Number, But Not Queen Size or Boldness, Predicts Colony Life-History in Wild Paper Wasps

2019 ◽  
Author(s):  
Colin M. Wright ◽  
David N. Fisher ◽  
Wayne V. Nerone ◽  
James L.L. Lichtenstein ◽  
Elizabeth A. Tibbetts ◽  
...  

AbstractColonies of social insects exhibit a spectacular variety of life histories. Here we documented the degree of variation in colony life-history traits, mostly related to productivity, in two species of wild paper wasps. We then tested for associations between colony life-history traits to look for trade-offs or positively associated syndromes, and examined whether individual differences in the behavioral tendencies of foundresses (Polistes metricus) or the number of cofoundresses (P. fuscatus) influenced colony life-history. The majority of our measures of colony life-history were positively related, indicating no obvious resource allocation trade-offs. Instead, the positive association of traits into a productivity syndrome appears to be driven by differences in queen or microhabitat quality. Syndrome structure differed only marginally between species. Queen boldness and body size were not associated with colony life-history inP. metricus. Colonies initiated by multipleP. fuscatusfoundresses were generally more productive, and this advantage was approximately proportional to the number of cofoundresses. These findings demonstrate that colony life-history traits can be associated together much like individual life-history traits, and the associations seen here convey that differences in overall productivity drive between-colony differences in life-history.


2010 ◽  
Vol 67 (7) ◽  
pp. 1086-1097 ◽  
Author(s):  
Christian Jørgensen ◽  
Øyvind Fiksen

When trade-offs involving predation and mortality are perturbed by human activities, behaviour and life histories are expected to change, with consequences for natural mortality rates. We present a general life history model for fish in which three common relationships link natural mortality to life history traits and behaviour. First, survival increases with body size. Second, survival declines with growth rate due to risks involved with resource acquisition and allocation. Third, fish that invest heavily in reproduction suffer from decreased survival due to costly reproductive behaviour or morphology that makes escapes from predators less successful. The model predicts increased natural mortality rate as an adaptive response to harvesting. This extends previous models that have shown that harvesting may cause smaller body size, higher growth rates, and higher investment in reproduction. The predicted increase in natural mortality is roughly half the fishing mortality over a wide range of harvest levels and parameter combinations such that fishing two fish kills three after evolutionary adaptations have taken place.



2011 ◽  
Vol 89 (8) ◽  
pp. 692-704 ◽  
Author(s):  
Evi Paemelaere ◽  
F. Stephen Dobson

The fast–slow continuum hypothesis explains life-history traits as reflecting the causal influence of mortality patterns in interaction with trade-offs among traits, particularly more reproductive effort at a cost of shorter lives. Variation among species of different body sizes produce more or less rapid life cycles (respectively, from small to large species), but the fast–slow continuum remains for birds and mammals when body-size effects are statistically removed. We tested for a fast–slow continuum in mammalian carnivores. We found the above trade-offs initially supported in a sample of 85 species. Body size, however, was strongly associated with phylogeny (ρ = 0.79), and thus we used regression techniques and independent contrasts to make statistical adjustments for both. After adjustments, the life-history trade-offs were not apparent, and few associations of life-history traits were significant. Litter size was negatively associated with age at maturity, but slightly positively associated with offspring mass. Litter size and mass were negatively associated with the length of the developmental period. Gestation length showed weak but significant negative associations with age at maturity and longevity. We conclude that carnivores, despite their wide range of body sizes and variable life histories, at best poorly exhibited a fast–slow continuum.



Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.



1988 ◽  
Vol 66 (8) ◽  
pp. 1906-1912 ◽  
Author(s):  
Todd W. Arnold

Recently, Zammuto (R. M. Zammuto. 1986. Can. J. Zool. 64: 2739–2749) suggested that North American game birds exhibited survival–fecundity trade-offs consistent with the "cost of reproduction" hypothesis. However, there were four serious problems with the data and the analyses that Zammuto used: (i) the species chosen for analysis ("game birds") showed little taxonomic or ecological uniformity, (ii) the measures of future reproductive value (maximum longevity) were severely biased by unequal sample sizes of band recoveries, (iii) the measures of current reproductive effort (clutch sizes) were inappropriate given that most of the birds analyzed produce self-feeding precocial offspring, and (iv) the statistical units used in the majority of analyses (species) were not statistically independent with respect to higher level taxonomy. After correcting these problems, I found little evidence of survival–fecundity trade-offs among precocial game birds, and I attribute most of the explainable variation in life-history traits of these birds to allometry, phylogeny, and geography.



2020 ◽  
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

AbstractAll life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth, and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast-slow life history continuum. However, empirical evidence of a relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life history traits – maximum body mass, generation length, and growth performance – explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.



Parasitology ◽  
1997 ◽  
Vol 114 (2) ◽  
pp. 195-204 ◽  
Author(s):  
R. POULIN

Parasite life-history traits should reflect past environmental and host-related selective pressures acting to produce strategies that maximize transmission success. The evolution of adult body size and egg production in 804 species of trematode parasites was investigated using independent contrasts derived from a phylogeny of trematodes. Contrasts in trematode body size were positively correlated with contrasts in egg size, and almost significantly correlated with contrasts in numbers of uterine eggs. After controlling for body size, no relationship existed between egg size and egg numbers, suggesting that there is no trade-off between the two components of egg production. Average host body mass and latitude of the sampling site did not correlate with either trematode body size or egg size. Contrasts between trematode taxa exploiting ectotherm hosts and their sister taxa exploiting endotherms showed no consistent difference in either body size or egg size. The effect of other variables on trematode life-histories, such as the nature of the habitat in which eggs are released, the site of attachment within the host's body, or the number of hosts involved in the life-cycle, could not be evaluated statistically. The similarity in life-history traits among members of given clades suggests that phylogenetic constraints may have acted to limit or mask any adaptive changes expected from changes in host-related or environmental conditions.



2021 ◽  
Vol 288 (1953) ◽  
pp. 20210910
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

All life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast–slow life-history continuum. However, empirical evidence of a direct interspecific relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life-history traits—maximum body mass, generation length and growth performance—explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life-history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.



Author(s):  
Mathilde Tissier ◽  
Patrick Bergeron ◽  
Dany Garant ◽  
Sandrine Zahn ◽  
Francois Criscuolo ◽  
...  

Understanding ageing and the diversity of life histories is a cornerstone in biology. Telomeres, the protecting caps of chromosomes, are thought to be involved in ageing, cancer risks and to modulate life-history strategies. They shorten with cell division and age in somatic tissues of most species, possibly limiting lifespan. The resource allocation trade-off hypothesis predicts that short telomeres have thus co-evolved with early reproduction, proactive behaviour and reduced lifespan, i.e. a fast Pace-of-Life Syndrome (POLS). Conversely, since short telomeres may also reduce the risks of cancer, the anti-cancer hypothesis advances that they should be associated with slow POLS. Conclusion on which hypothesis best supports the role of telomeres as mediators of life-history strategies is hampered by a lack of study on wild short-lived vertebrates, apart from birds. Using seven years of data on wild Eastern chipmunks Tamias striatus, we highlighted that telomeres elongate with age and do not limit lifespan in this species. Furthermore, short telomeres correlated with a slow POLS in a sex-specific way. Females with short telomeres had a delayed age at first breeding and a lower fecundity rate than females with long telomeres, whereas those differences were not recorded in males. Our findings support most predictions adapted from the anti-cancer hypothesis, but none of those made under the resource allocation trade-off hypothesis. Results are in line with an increasing body of evidence suggesting that resource allocation trade-offs alone cannot explaining the diversity of telomere length in adult somatic cells and life-histories observed across the tree of life.



2010 ◽  
Vol 88 (9) ◽  
pp. 889-899 ◽  
Author(s):  
F. Stephen Dobson ◽  
Pierre Jouventin

A trade-off between reproduction and survival is one of the most consistent empirical aspects of life-history diversification. One explanation for this interspecific pattern is evolved differences in the balance of allocation to reproduction versus individual maintenance and survival. The same pattern is expected, however, simply as a result of differences among species in body size. We tested these alternatives using original data from 44 species of albatrosses and petrels, long-lived seabirds that breed very slowly. After application of regression techniques to remove the effects of body size and phylogeny, annual reproduction and survival exhibited a significant trade-off. Our measures of reproductive effort also exhibited significant trade-offs with age at maturity, the latter strongly associated with survival. Feeding rate of chicks, success at fledging chicks, and annual chick production were also significantly associated. In conclusion, after removing the effects of body size, we found a significant trade-off of reproduction and survival, in spite of the fact that these long-lived birds lay only one egg at a time. Our examination of the pattern among life-history traits of these slow breeders and their pelagic feeding ecology provide support for the evolutionary explanation of a trade-off of reproduction and survival.



2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.



Sign in / Sign up

Export Citation Format

Share Document