scholarly journals Temperature preference does not evolve in sticklebacks despite multigenerational exposure to elevated temperatures

2019 ◽  
Author(s):  
Natalie Pilakouta ◽  
Shaun S. Killen ◽  
Bjarni K. Kristjánsson ◽  
Skúli Skúlason ◽  
Jan Lindström ◽  
...  

ABSTRACTGiven the threat of climate change to biodiversity, a growing number of studies are investigating the potential for organisms to adapt to rising temperatures through changes in their physiology, morphology, and behaviour. Earlier work has predicted that evolutionary adaptation to climate change will be accompanied by a shift in temperature preferences, but empirical evidence for this is limited. Here, we test whether exposure to a warm environment over multiple generations has led to the evolution of higher preferred temperatures in the wild. We have taken advantage of a ‘natural experiment’ in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity year-round (warm habitats), adjacent to populations in ambient-temperature lakes (cold habitats). We hypothesised that sticklebacks from warm habitats would prefer higher water temperatures than those from cold habitats, but we found no support for this hypothesis. Fish from both warm and cold habitats had an average preferred temperature of 13°C, which is considerably lower than the temperatures experienced by fish in warm habitats for most of the year. Our results therefore challenge the assumption that temperature preferences in ectotherms will readily evolve as a response to climate change. Furthermore, the fact that warm-habitat fish are able to persist at relatively high temperatures despite a lower temperature preference suggests that preferred temperature may be a poor indicator of a population’s evolutionary potential and capacity to adapt to a novel thermal environment.

1977 ◽  
Vol 34 (5) ◽  
pp. 749-752 ◽  
Author(s):  
Robert W. McCauley

Different types of temperature-gradient devices used in the laboratory to determine temperature preferences of fish are classified and reviewed. The type of device used seems to have less effect on experimental results than do other variables such as age, size, season, physiological state, or social interactions. Key words: preferred temperature, thermal gradients, thermoregulation, behavioral, gradient devices, laboratory techniques


2019 ◽  
Author(s):  
Natalie Pilakouta ◽  
Joseph L. Humble ◽  
Iain D.C. Hill ◽  
Jessica Arthur ◽  
Ana P.B. Costa ◽  
...  

ABSTRACTIn light of climate change, the ability to predict evolutionary responses to temperature changes is of central importance for conservation efforts. Prior work has focused on exposing model organisms to different temperatures for just one or a few generations under laboratory conditions. Using a ‘natural experiment’, we show that studying parallel evolution in wild populations from contrasting thermal environments presents a more powerful approach for understanding and predicting responses to climate change. More specifically, we used a unique study system in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity, adjacent to populations in ambient-temperature water. We used three sympatric and three allopatric warm-cold population pairs to test for repeated patterns of morphological divergence in relation to thermal habitat. We found that thermal habitat explained over 50% of body shape variation: fish from warm habitats had a deeper mid-body, a shorter jaw, and smaller eyes. Our common garden experiment showed that most of these morphological differences between thermal habitats were heritable. Lastly, absence of gene flow seems to facilitate parallel divergence across thermal habitats: all three allopatric population pairs were on a common evolutionary trajectory, whereas sympatric pairs followed different trajectories. Our findings therefore suggest that morphological responses to rising temperatures can be predictable when there is limited gene flow. On the other hand, migration of individuals between different thermal habitats or microhabitats can exaggerate nonparallel evolution and reduce our ability to predict evolutionary responses.


1987 ◽  
Vol 65 (6) ◽  
pp. 1573-1576 ◽  
Author(s):  
Stephanie Lachance ◽  
Pierre Magnan ◽  
Gerard J. FitzGerald

We determined the temperature preferences of three sympatric species of sticklebacks in the laboratory to see if differences in preferences could explain variation in times of reproductive migration to and from salt marsh tide pools along the southern shore of the St. Lawrence estuary, Quebec. The preferred temperatures were 9–12 °C for Gasterosteus aculeatus (form trachurus) and 11–14 °C for G. wheatlandi, while Pungitius pungitius showed a bimodal preference of 9–10 °C and 15–16 °C. In the field, G. aculeatus and G. wheatlandi left the tide pools earlier in the season than P. pungitius. Our results suggest that temperature preference may play a role in habitat partitioning among these species, hence facilitating their coexistence at high densities in the pools.


Mousaion ◽  
2016 ◽  
Vol 33 (3) ◽  
pp. 1-24
Author(s):  
Emmanuel Elia ◽  
Stephen Mutula ◽  
Christine Stilwell

This study was part of broader PhD research which investigated how access to, and use of, information enhances adaptation to climate change and variability in the agricultural sector in semi-arid Central Tanzania. The research was carried out in two villages using Rogers’ Diffusion of Innovations theory and model to assess the dissemination of this information and its use by farmers in their adaptation of their farming practices to climate change and variability. This predominantly qualitative study employed a post-positivist paradigm. Some elements of a quantitative approach were also deployed in the data collection and analysis. The principal data collection methods were interviews and focus group discussions. The study population comprised farmers, agricultural extension officers and the Climate Change Adaptation in Africa project manager. Qualitative data were subjected to content analysis whereas quantitative data were analysed to generate mostly descriptive statistics using SPSS.  Key findings of the study show that farmers perceive a problem in the dissemination and use of climate information for agricultural development. They found access to agricultural inputs to be expensive, unreliable and untimely. To mitigate the adverse effects of climate change and variability on farming effectively, the study recommends the repackaging of current and accurate information on climate change and variability, farmer education and training, and collaboration between researchers, meteorology experts, and extension officers and farmers. Moreover, a clear policy framework for disseminating information related to climate change and variability is required.


2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Dibakar Mahanta ◽  
Jaideep Kumar Bisht ◽  
Lakshmi Kant ◽  
Arunava Pattanayak

Sign in / Sign up

Export Citation Format

Share Document