scholarly journals Genetic analysis of the transition from wild to domesticated cotton (G. hirsutum L.)

2019 ◽  
Author(s):  
Corrinne E. Grover ◽  
Mi-Jeong Yoo ◽  
Meng Lin ◽  
Matthew D. Murphy ◽  
David B. Harker ◽  
...  

AbstractThe evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.SummaryAn F2 population between wild and domesticated cotton was used to identify QTL associated with selection under domestication. Multiple traits characterizing domesticated cotton were evaluated, and candidate genes underlying QTL are described for all traits. QTL are unevenly distributed between subgenomes of the domesticated polyploid, with many fiber QTL located on the genome derived from the D parent, which does not have spinnable fiber, but a majority of QTL overall located on the A subgenome. QTL are many (120) and environmentally labile. These data, together with candidate gene analyses, suggest recruitment of many environmentally responsive factors during cotton domestication.

2019 ◽  
Vol 10 (2) ◽  
pp. 731-754 ◽  
Author(s):  
Corrinne E. Grover ◽  
Mi-Jeong Yoo ◽  
Meng Lin ◽  
Matthew D. Murphy ◽  
David B. Harker ◽  
...  

The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian S. E. Bally ◽  
◽  
Aureliano Bombarely ◽  
Alan H. Chambers ◽  
Yuval Cohen ◽  
...  

Abstract Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.


Crop Science ◽  
2018 ◽  
Vol 58 (2) ◽  
pp. 701-712 ◽  
Author(s):  
Jason P. Cook ◽  
H. ‐Y. Heo ◽  
A. C. Varella ◽  
S. P. Lanning ◽  
N. K. Blake ◽  
...  

2016 ◽  
Vol 62 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Robert M.Q. Shanks ◽  
Nicholas A. Stella ◽  
Kimberly M. Brothers ◽  
Denise M. Polaski

Pili are essential adhesive determinants for many bacterial pathogens. A suppressor mutation screen that takes advantage of a pilus-mediated self-aggregative “hockey-puck” colony phenotype was designed to identify novel regulators of type I pili in Serratia marcescens. Mutations that decreased pilus biosynthesis mapped to the fimABCD operon; to the genes alaT, fkpA, and oxyR; upstream of the flagellar master regulator operon flhDC; and to an uncharacterized gene encoding a predicted DUF1401 domain. Biofilm formation and pilus-dependent agglutination assays were used to characterize the relative importance of the identified genes in pilus biosynthesis. Additional mutagenic or complementation analysis was used to verify the role of candidate genes in pilus biosynthesis. Presented data support a model that CRP negatively regulates pilus biosynthesis through increased expression of flhDC and decreased expression of oxyR. Further studies are warranted to determine the mechanism by which these genes mediate pilus biosynthesis or function.


2014 ◽  
Vol 14 (1) ◽  
pp. 137 ◽  
Author(s):  
Gerardo Sánchez ◽  
José Martínez ◽  
José Romeu ◽  
Jesús García ◽  
Antonio J Monforte ◽  
...  

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Stefan Royaert ◽  
Johannes Jansen ◽  
Daniela Viana da Silva ◽  
Samuel Martins de Jesus Branco ◽  
Donald S. Livingstone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document