scholarly journals Behavioral syndromes shape evolutionary trajectories via conserved genetic architecture

2019 ◽  
Author(s):  
Raphael Royauté ◽  
Ann Hedrick ◽  
Ned A. Dochtermann

AbstractBehaviors are often correlated within broader syndromes, creating the potential for evolution in one behavior to drive evolutionary changes in other behaviors. Despite demonstrations that behavioral syndromes are common across taxa, whether this potential for evolutionary effects is realized has not yet been demonstrated. Here we show that populations of field crickets (Gryllus integer) exhibit a genetically conserved behavioral syndrome structure despite differences in average behaviors. We found that the distribution of genetic variation and genetic covariance among behavioral traits was consistent with genes and cellular mechanisms underpinning behavioral syndromes rather than correlated selection. Moreover, divergence among populations’ average behaviors was constrained by the genetically conserved behavioral syndrome. Our results demonstrate that a conserved genetic architecture linking behaviors has shaped the evolutionary trajectories of populations in disparate environments—illustrating an important way by which behavioral syndromes result in shared evolutionary fates.

2020 ◽  
Vol 287 (1927) ◽  
pp. 20200183 ◽  
Author(s):  
Raphaël Royauté ◽  
Ann Hedrick ◽  
Ned A. Dochtermann

Behaviours are often correlated within broader syndromes, creating the potential for evolution in one behaviour to drive evolutionary changes in other behaviours. Despite demonstrations that behavioural syndromes are common, this potential for evolutionary effects has not been demonstrated. Here we show that populations of field crickets ( Gryllus integer ) exhibit a genetically conserved behavioural syndrome structure, despite differences in average behaviours. We found that the distribution of genetic variation and genetic covariance among behavioural traits was consistent with genes and cellular mechanisms underpinning behavioural syndromes rather than correlated selection. Moreover, divergence among populations' average behaviours was constrained by the genetically conserved behavioural syndrome. Our results demonstrate that a conserved genetic architecture linking behaviours has shaped the evolutionary trajectories of populations in disparate environments—illustrating an important way for behavioural syndromes to result in shared evolutionary fates.


2019 ◽  
Author(s):  
Pengjuan Zu ◽  
Florian P. Schiestl ◽  
Daniel Gervasi ◽  
Xin Li ◽  
Daniel Runcie ◽  
...  

AbstractBackgroundAngiosperms employ an astonishing variety of visual and olfactory floral signals that are generally thought to evolve under natural selection. Those morphological and chemical traits can form highly correlated sets of traits. It is not always clear which of these are used by pollinators as primary targets of selection and which would be indirectly selected by being linked to those primary targets. Quantitative genetics tools for predicting multiple traits response to selection have been developed since long and have advanced our understanding of evolution of genetically correlated traits in various biological systems. We use these tools to predict the evolutionary trajectories of floral traits and understand the selection pressures acting on them.ResultsWe used data from an artificial and a pollinator (bumblebee, hoverfly) selection experiment with fast cycling Brassica rapa plants to predict evolutionary changes of 12 floral volatiles and 4 morphological floral traits in response to selection. Using the observed selection gradients and the genetic variance-covariance matrix (G-matrix) of the traits, we showed that the responses of most floral traits including volatiles were predicted in the right direction in artificial- and bumblebee-selection experiment, revealing direct and indirect targets of bumblebee selection. Genetic covariance had a mix of constraining and facilitating effects on evolutionary responses. We further revealed how G-matrices evolved in the selection processes.ConclusionsOverall, our integrative study shows that floral signals, and especially volatiles, evolve under selection in a mostly predictable way, at least during short term evolution. Evolutionary constraints stemming from genetic covariance affected traits evolutionary trajectories and thus it is important to include genetic covariance for predicting the evolutionary changes of a comprehensive suite of traits. Other processes such as resource limitation and selfing also needs to be considered for a better understanding of floral trait evolution.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pengjuan Zu ◽  
Florian P. Schiestl ◽  
Daniel Gervasi ◽  
Xin Li ◽  
Daniel Runcie ◽  
...  

Abstract Background Angiosperms employ an astonishing variety of visual and olfactory floral signals that are generally thought to evolve under natural selection. Those morphological and chemical traits can form highly correlated sets of traits. It is not always clear which of these are used by pollinators as primary targets of selection and which would be indirectly selected by being linked to those primary targets. Quantitative genetics tools for predicting multiple traits response to selection have been developed since long and have advanced our understanding of evolution of genetically correlated traits in various biological systems. We use these tools to predict the evolutionary trajectories of floral traits and understand the selection pressures acting on them. Results We used data from an artificial selection and a pollinator (bumblebee, hoverfly) evolution experiment with fast cycling Brassica rapa plants to predict evolutionary changes of 12 floral volatiles and 4 morphological floral traits in response to selection. Using the observed selection gradients and the genetic variance-covariance matrix (G-matrix) of the traits, we showed that the observed responses of most floral traits including volatiles were predicted in the right direction in both artificial- and bumblebee-selection experiment. Genetic covariance had a mix of constraining and facilitating effects on evolutionary responses. We further revealed that G-matrices also evolved in the selection processes. Conclusions Overall, our integrative study shows that floral signals, especially volatiles, evolve under selection in a mostly predictable way, at least during short term evolution. Evolutionary constraints stemming from genetic covariance affected traits evolutionary trajectories and thus it is important to include genetic covariance for predicting the evolutionary changes of a comprehensive suite of traits. Other processes such as resource limitation and selfing also need to be considered for a better understanding of floral trait evolution.


2021 ◽  
Author(s):  
Haifeng Li ◽  
Xinyu ZHang ◽  
Yi Wu ◽  
Feng ZHang ◽  
CHunlin Li

Abstract Personality has been observed in a variety of animal taxa with important implications in ecology and evolution. Exploring the influence of environmental temperature during early life on personality could help to understand the ontogeny of this phenotypic trait in animals. In this study, we reared newborn mosquitofish Gambusia affinis at high (30°C) and low (25°C) water temperatures and measured their shyness and exploration upon sexual maturity. We tested the repeatability of each behavioral trait; the correlation between them; and the effects of rearing temperature, sex, and body length on the behaviors. When growing up at low temperatures, female fish exhibited repeatability in shyness and exploration, and males exhibited marginal repeatability in shyness. However, neither of the 2 behaviors were repeatable when the fish were reared at high temperatures. There was a negative correlation between shyness and exploration, indicating that the 2 behaviors comprise a behavioral syndrome in this species. Mosquitofish reared at high temperatures were more explorative than those reared at low temperatures, while there was no difference in shyness between the 2 treatments. Body length and sex had no significant effects on the average values of the 2 behaviors. The results indicate that environmental temperature during early life could shape the personality of mosquitofish and modify the average of the behavioral traits. These findings might provide insights to understand the ontogeny of animal personality and how changes in environmental temperature influence animal dispersal by shaping their personality.


2021 ◽  
Vol 10 (15) ◽  
pp. 3417
Author(s):  
Pamela Ruiz-Castañeda ◽  
María Teresa Daza-González ◽  
Encarnación Santiago-Molina

The present study had three main aims: (1) to explore the possible relationships between the two dimensions of negative symptoms (NS) with the three frontal behavioral syndromes (dorsolateral, orbitofrontal and the anterior or mesial cingulate circuit) in patients with schizophrenia; (2) to determine the influence of sociodemographic and clinical variables on the severity of the two dimensions of NS (expressive deficits and disordered relationships/avolition); and (3) to explore the possible relationships between the two dimensions of NS and social functioning. We evaluated a group of 33 patients with schizophrenia with a predominance of NS using the self-reported version of the Frontal System Behavior scale. To quantify the severity of NS, the Assessment of Negative Symptoms (SANS) scale was used. The results revealed that the two dimensions of NS correlate positively with the behavioral syndrome of dorsolateral prefrontal origin. Regarding the influence of sociodemographic and clinical variables, in patients with a long evolution the NS of the expressive deficits dimension were less severe than in patients with a short evolution. A negative correlation was found between the severity of NS of the disordered relationships/avolition dimension and perceived social functioning. Our results show the importance of differentiating between the two dimensions of NS to characterize better their possible frontal etiology and impact on clinical course and social functioning.


2020 ◽  
Vol 7 ◽  
Author(s):  
Qihang Liang ◽  
Xianpeng Su ◽  
Fang Wang ◽  
Baishan Zhu ◽  
Mingdi He

Boldness and aggressiveness are crucial behavioral traits in the field of animal personality, and both have important ecological and evolutionary significance. As swimming crabs (Portunus trituberculatus) are aggressive, their production is affected; thus, it is important to study their behavior. To assess the relationship between boldness and aggressiveness of male P. trituberculatus and the differences between their different life stages, we determined the individual differences in these two traits in juvenile and adult crabs under laboratory conditions. Based on the k-means cluster analysis, boldness of crabs is classified according to their rush to adventure, and aggressiveness of crabs is classified according to their aggressive behavior toward conspecifics. The results show that the personality classification of juvenile and adult crabs was consistent. Boldness was divided into three levels: bold, middle, and shy. Aggressiveness was divided into two levels: aggressiveness and non-aggressiveness. The personality of juveniles and adults P. trituberculatus males was significantly different; juveniles presented higher aggressiveness and lower boldness than adults. Additionally, a significant positive correlation between boldness and aggressiveness of adult crabs was verified (P = 0.001, ρ = 0.271). However, this correlation in juvenile crabs was not significant (P = 0.702, ρ = 0.042). These preliminary results indicate that the personality of P. trituberculatus males has developmental plasticity and adults have the boldness-aggressiveness behavioral syndrome.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ping Huang ◽  
Colette M St.Mary ◽  
Rebecca T Kimball

Abstract Behavioral traits that vary consistently among individuals across different contexts are often termed as ‘personality traits,’ while the correlated suite formed by those traits is called a ‘behavioral syndrome’. Both personality trait and behavioral syndrome are potentially responsive to animal ‘states’, defined as strategically relevant individual features affecting the cost-and-benefit trade-offs of behavioral actions. Both extrinsic ‘states’ (e.g. urban versus rural habitats), and intrinsic ‘states’ (e.g. sex), may shape among-individual variation in personality traits, as well as behavioral syndromes. Here, we used northern cardinals sampled from four locations to examine the effect of habitat type (urban versus rural, an extrinsic state), stress hormone corticosterone (CORT) parameters, body weight and sex (intrinsic states) on personality traits and behavioral syndrome variation. We used behavioral trials to measure five personality traits. Using principal component analysis to quantify personality traits first, followed by general linear mixed models, we found that habitat type, CORT at capture and 2-day CORT response affected some personality traits, while body weight and sex did not. Cardinals inhabiting more urbanized areas had lower CORT metabolite levels at capture and were more neophilic, less neophobic and also less aggressive than their rural conspecifics. Using structural equation modeling to construct behavioral syndromes formed by our selected personality traits, we found that urban and rural cardinals varied in the models representing syndrome structure. When utilizing the shared syndrome structural model to examine the effects of states, habitat type and 2-day CORT response appear to affect syndrome variation in a coordinated, not hierarchical, manner.


Sign in / Sign up

Export Citation Format

Share Document