scholarly journals ML277 specifically enhances pore opening of KCNQ1 with VSD at the activated state by modulating VSD-pore coupling

2019 ◽  
Author(s):  
Panpan Hou ◽  
Jingyi Shi ◽  
Kelli McFarland White ◽  
Yuan Gao ◽  
Jianmin Cui

AbstractIn response to membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states that correspond to the stepwise activation of the voltage sensing domain (VSD) to the intermediate (I) and activated (A) states. In the heart, KCNQ1 associates with the auxiliary subunit KCNE1 to form the IKs channel that regulates heart rhythm. More than 300 of loss-of-function KCNQ1 mutations cause long QT syndrome (LQTS). KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Thus, enhancing AO state presents a potential therapy for anti-LQTS. Here, we systematically tested modulations of KCNQ1 channels by a KCNQ1 activator, ML277. It enhances the current amplitude, slows down activation, deactivation and inactivation kinetics, shifts the voltage dependence of activation to more positive voltages, decreases the Rb+/K+ permeability ratio, and selectively increases currents of mutant KCNQ1 channels that open only to the AO state. All these observations are consistent with the mechanism that ML277 specifically potentiates the AO state. On the other hand, ML277 does not affect the VSD activation, suggesting that it potentiates the AO state by enhancing the electromechanical (E-M) coupling when the VSD moves to the activated state. Our results suggest that ML277 provides a unique tool to investigate the gating mechanism of KCNQ1 and IKs channels. The specificity of ML277 to increase the AO state of native IKs currents also suggests a new strategy for anti-LQTS therapy.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Panpan Hou ◽  
Jingyi Shi ◽  
Kelli McFarland White ◽  
Yuan Gao ◽  
Jianmin Cui

Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.


2020 ◽  
Author(s):  
Po Wei Kang ◽  
Annie M. Westerlund ◽  
Jingyi Shi ◽  
Kelli McFarland White ◽  
Alex K. Dou ◽  
...  

AbstractCalmodulin (CaM) and PIP2 are potent regulators of the voltage-gated potassium channel KCNQ1 (KV7.1), which conducts the IKs current important for repolarization of cardiac action potentials. Although cryo-EM structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully-activated state allows PIP2 to compete with CaM for binding to VSD, leading to the conformational change that alters the VSD-pore coupling. We identify a motif in the KCNQ1 cytosolic domain which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its function in the heart.


2020 ◽  
Vol 6 (50) ◽  
pp. eabd6798
Author(s):  
Po Wei Kang ◽  
Annie M. Westerlund ◽  
Jingyi Shi ◽  
Kelli McFarland White ◽  
Alex K. Dou ◽  
...  

Calmodulin (CaM) and phosphatidylinositol 4,5-bisphosphate (PIP2) are potent regulators of the voltage-gated potassium channel KCNQ1 (KV7.1), which conducts the cardiac IKs current. Although cryo–electron microscopy structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully activated state allows PIP2 to compete with CaM for binding to VSD. This leads to conformational changes that alter VSD-pore coupling to stabilize open states. We identify a motif in the KCNQ1 cytosolic domain, which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its physiological function.


2019 ◽  
Author(s):  
Panpan Hou ◽  
Po Wei Kang ◽  
Audrey Deyawe Kongmeneck ◽  
Nien-Du Yang ◽  
Yongfeng Liu ◽  
...  

AbstractIn voltage-gated potassium (KV) channels, the voltage-sensing domain (VSD) undergoes sequential activation from the resting state to the intermediate state and activated state to trigger pore opening via electro-mechanical (E-M) coupling. However, the spatial and temporal details underlying E-M coupling remain elusive. Here, we leverage KV7.1’s unique two open states associated with the VSD adopting the intermediate and activated conformations to report a two-stage E-M coupling mechanism in voltage-dependent gating of KV7.1 as triggered by VSD activations to the intermediate and then activated state. When the S4 segment transitions to the intermediate state, the hand-like C-terminus of the VSD-pore linker (S4-S5L) interacts with the pore in the same subunit. When S4 then proceeds on to the fully-activated state, the elbow-like hinge between S4 and S4-S5L engages with the pore to activate conductance. This two-stage “hand-and-elbow” gating mechanism elucidates distinct tissue-specific modulations, pharmacology, and disease pathogenesis of KV7.1, and likely applies to numerous KV channels.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hai-qing Liu ◽  
Ya-jie Zou ◽  
Xiao-feng Li ◽  
Lei Wu ◽  
Guang-qin Guo

AbstractN-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sonal Nagarkar-Jaiswal ◽  
Pei-Tseng Lee ◽  
Megan E Campbell ◽  
Kuchuan Chen ◽  
Stephanie Anguiano-Zarate ◽  
...  

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


2018 ◽  
Vol 115 (50) ◽  
pp. E11837-E11846 ◽  
Author(s):  
Matan Geron ◽  
Rakesh Kumar ◽  
Wenchang Zhou ◽  
José D. Faraldo-Gómez ◽  
Valeria Vásquez ◽  
...  

Many neurotoxins inflict pain by targeting receptors expressed on nociceptors, such as the polymodal cationic channel TRPV1. The tarantula double-knot toxin (DkTx) is a peptide with an atypical bivalent structure, providing it with the unique capability to lock TRPV1 in its open state and evoke an irreversible channel activation. Here, we describe a distinct gating mechanism of DkTx-evoked TRPV1 activation. Interestingly, DkTx evokes significantly smaller TRPV1 macroscopic currents than capsaicin, with a significantly lower unitary conductance. Accordingly, while capsaicin evokes aversive behaviors in TRPV1-transgenic Caenorhabditis elegans, DkTx fails to evoke such response at physiological concentrations. To determine the structural feature(s) responsible for this phenomenon, we engineered and evaluated a series of mutated toxins and TRPV1 channels. We found that elongating the DkTx linker, which connects its two knots, increases channel conductance compared with currents elicited by the native toxin. Importantly, deletion of the TRPV1 pore turret, a stretch of amino acids protruding out of the channel’s outer pore region, is sufficient to produce both full conductance and aversive behaviors in response to DkTx. Interestingly, this deletion decreases the capsaicin-evoked channel activation. Taken together with structure modeling analysis, our results demonstrate that the TRPV1 pore turret restricts DkTx-mediated pore opening, probably through steric hindrance, limiting the current size and mitigating the evoked downstream physiological response. Overall, our findings reveal that DkTx and capsaicin elicit distinct TRPV1 gating mechanisms and subsequent pain responses. Our results also indicate that the TRPV1 pore turret regulates the mechanisms of channel gating and permeation.


2021 ◽  
Author(s):  
N. Layer ◽  
L. Sonnenberg ◽  
E. Pardo González ◽  
J. Benda ◽  
H. Lerche ◽  
...  

AbstractDravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in interneurons (IN). Recently, a new conditional mouse model expressing the recurrent human p.A1783V missense variant has become available. Here we provide an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Simulating IN excitability in a Hodgkin-Huxley one-compartment model suggested surprisingly similar firing deficits for Scn1aA1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaVA1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.A1783V variant in vitro confirmed the predicted IN firing deficit while demonstrating normal excitability of pyramidal neurons. Taken together these data demonstrate that despite maintained physiological peak currents density LOF gating properties may match effects of full haploinsufficiency on neuronal level, thereby causing DS.HighlightsNaV1.1A1783V alters voltage-dependence of activation and slow inactivation while not affecting fast inactivation.Depolarizing and hyperpolarizing shifts of activation and slow inactivation curves result in combined channel loss of function (LOF).Simulations of NaV1.1A1783V interneuronal properties indicate reduced action potential firing rates comparable to full SCN1A haploinsufficiency, which is often found in Dravet syndrome.In silico modelling identifies impaired channel activation as the predominant mechanism of channel LOF.Panneuronal induction of Scn1a+/A1783V in a cortical slice culture model confirms restriction of loss of function and its restriction to interneurons.


2019 ◽  
Author(s):  
Georg Kuenze ◽  
Amanda M. Duran ◽  
Hope Woods ◽  
Kathryn R. Brewer ◽  
Eli Fritz McDonald ◽  
...  

AbstractThe voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and resting voltage sensor structures. Using molecular dynamics (MD) simulations, the models’ capability to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor – pore domain interactions were validated. Rosetta energy calculations were applied to assess the models’ utility in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants had no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural mechanisms of KCNQ1 function and can be used to generate structure-based hypotheses to explain KCNQ1 dysfunction.Author SummaryCardiac rhythm is maintained by synchronized electrical impulses conducted throughout the heart. The potassium ion channel KCNQ1 is important for the repolarization phase of the cardiac action potential that underlies these electrical impulses. Heritable mutations in KCNQ1 can lead to channel loss-of-function (LOF) and predisposition to a life-threatening cardiac arrhythmia. Knowledge of the three-dimensional structure of KCNQ1 is important to understand how mutations lead to LOF and to support structurally-guided design of new anti-arrhythmic drugs. In this work, we present the development and validation of molecular models of human KCNQ1 inferred by homology from the structure of frog KCNQ1. Models were developed for the open channel state in which potassium ions can pass through the channel and the closed state in which the channel is not conductive. Using molecular dynamics simulations, interactions in the voltage-sensing and pore domain of KCNQ1 and with the membrane lipid PIP2 were analyzed. Energy calculations for KCNQ1 mutations in the voltage-sensing domain reveled that most of the mutations that lead to LOF cause energetic destabilization of the KCNQ1 protein. The results support both the utility of the new models and growing evidence that mutation-induced protein destabilization is a common cause of KCNQ1 dysfunction.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quentin Bourgeois-Jaarsma ◽  
Matthijs Verhage ◽  
Alexander J. Groffen

Abstract Communication between neurons involves presynaptic neurotransmitter release which can be evoked by action potentials or occur spontaneously as a result of stochastic vesicle fusion. The Ca2+-binding double C2 proteins Doc2a and –b were implicated in spontaneous and asynchronous evoked release, but the mechanism remains unclear. Here, we compared wildtype Doc2b with two Ca2+ binding site mutants named DN and 6A, previously classified as gain- and loss-of-function mutants. They carry the substitutions D218,220N or D163,218,220,303,357,359A respectively. We found that both mutants bound phospholipids at low Ca2+ concentrations and were membrane-associated in resting neurons, thus mimicking a Ca2+-activated state. Their overexpression in hippocampal primary cultured neurons had similar effects on spontaneous and evoked release, inducing high mEPSC frequencies and increased short-term depression. Together, these data suggest that the DN and 6A mutants both act as gain-of-function mutants at resting conditions.


Sign in / Sign up

Export Citation Format

Share Document