scholarly journals Human immune cells infiltrate the lesioned spinal cord and impair recovery after spinal cord injury in humanized mice

2019 ◽  
Author(s):  
Randall S. Carpenter ◽  
Roselyn R. Jiang ◽  
Faith H. Brennan ◽  
Jodie C.E. Hall ◽  
Manoj K. Gottipati ◽  
...  

Summary PointsImmune compromised mice require ~4 months of engraftment with human umbilical cord blood CD34+ stem cells to develop a full and functional human immune systemThe human neuroinflammatory response elicited after spinal cord injury in humanized mice is limited at 2 months post-engraftment but matures by 4 monthsIntraspinal neuroinflammation consists of a florid human T cell and macrophage response, and human T cells co-localize with human macrophagesA human intraspinal neuroinflammatory response exacerbates lesion pathology and impairs functional recoveryAbstractHumanized mice are a useful tool to help better understand how the human immune system responds to central nervous system (CNS) injury. However, the optimal parameters for using humanized mice in preclinical CNS injury models have not been established. Here, we show that it takes 3-4 months after engraftment of neonatal immune compromised mice with human umbilical cord stem cells to generate a robust human immune system. Indeed, sub-optimal human immune cell responses occurred when humanized mice received spinal contusion injuries at 2 months vs. 4 months post-engraftment. Human T cells directly contact human macrophages within the spinal cord lesion of these mice and the development of a mature human immune system was associated with worse lesion pathology and neurological recovery. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Randall S. Carpenter ◽  
Roselyn R. Jiang ◽  
Faith H. Brennan ◽  
Jodie C. E. Hall ◽  
Manoj K. Gottipati ◽  
...  

AbstractHumanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3–4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.


2018 ◽  
Vol 80 (1) ◽  
pp. e12859 ◽  
Author(s):  
Florian Schlieckau ◽  
Daniela Schulz ◽  
Sara Fill Malfertheiner ◽  
Kathrin Entleutner ◽  
Birgit Seelbach-Goebel ◽  
...  

2019 ◽  
Author(s):  
Lance Daharsh ◽  
Amanda E. Ramer-Tait ◽  
Qingsheng Li

AbstractBackgroundHumanized mice featuring a functional human immune system are an important pre-clinical model for examining immune responses to human-specific pathogens. This model has been widely utilized to study human diseases that are otherwise impossible or difficult to investigate in humans or with other animal models. However, one limitation of using humanized mice is their native murine gut microbiome, which significantly differs from the one found in humans. These differences may be even greater for mice housed and bred in specific pathogen free conditions. Given the importance of the gut microbiome to human health and disease, these differences may profoundly impact the ability to translate the results from humanized mice studies to human disease. Further, there is a critical need for improved pre-clinical models to study the complex in vivo relationships of the gut microbiome, immune system, and human disease. We therefore created double humanized mice with both a functional human immune system and stable human-like gut microbiome.ResultsSurgery was performed on NOD.Cg-PrkdcscidII2rgtm1Wjl/SzJ (NSG) mice to create bone-marrow, liver, thymus (BLT) humanized mice. After immune reconstitution, mice were treated with broad spectrum antibiotics to deplete murine gut bacteria and then transplanted with fecal material from healthy human donors. Characterization of 173 fecal samples obtained from 45 humanized mice revealed that double humanized mice had unique 16S rRNA gene profiles consistent with those of the individual human donor samples. Importantly, transplanted human-like gut microbiomes were stable in mice for the duration of the study, up to 14.5 weeks post-transplant. Microbiomes of double humanized mice also harbored predicted functional capacities that more closely resembled those of the human donors compared to humanized mice.ConclusionsHere, we describe successful engraftment of a stable human microbiome in BLT humanized mice to further improve this preclinical humanized mouse model. These double humanized mice represent a unique and tractable new model to study the complex relationships between the human gut microbiome, human immune system, and human disease in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tijana Martinov ◽  
Kelly M. McKenna ◽  
Wei Hong Tan ◽  
Emily J. Collins ◽  
Allie R. Kehret ◽  
...  

Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.


e-Neuroforum ◽  
2010 ◽  
Vol 16 (3) ◽  
Author(s):  
B. Brommer ◽  
M.A. Kopp ◽  
I. Laginha ◽  
J.M. Schwab

AbstractInfections are a leading cause of morbidi­ty and mortality in patients with acute spinal cord injury (SCI). It has recently become clear that SCI might increase susceptibility to infec­tion by central nervous system (CNS)-specific mechanisms: CNS injury induces a disrup­tion of the normally well-balanced interplay between the immune system and the CNS. As a result, SCI also leads to secondary im­munodeficiency (SCI injury-induced immu­nodepression, SCI-IDS) and infection. SCI-IDS (a) starts early after SCI (within 24 h), (b) af­fects both the innate and adaptive immune system, and (c) is independent of iatrogenic application of high-dose corticosteroids. The fact that increased immunosuppression cor­relates with lesion level underlines a neurogenic origin. Here we summarize the current understanding and main pathophysiological features of leukocyte dysfunction following SCI. A better understanding of this syndrome may provide insights into how the CNS controls the immune system. Furthermore, the identification of patients suffering from spi­nal cord injury as immunocompromised is a clinically relevant, yet widely underappreci­ated finding.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4293-4296 ◽  
Author(s):  
Noriko Tonomura ◽  
Katsuyoshi Habiro ◽  
Akira Shimizu ◽  
Megan Sykes ◽  
Yong-Guang Yang

Abstract Humanized mice with a functional human immune system would be very useful for in vivo studies of human immunobiology. We have previously shown that cotransplantation of human fetal thymus/liver tissues and CD34+ fetal liver cells into immunodeficient nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice leads to the development of multiple lineages of human lymphohematopoietic cells and formation of secondary lymphoid organs with normal architecture. Here, we evaluated the ability of these humanized mice to develop antigen-specific, T cell–dependent antibody responses after in vivo immunization with T-dependent antigen, 2,4-dinitrophenyl hapten-keyhole limpet hemocyanin (DNP23-KLH). Human T cells from DNP23-KLH–immunized mice showed strong proliferation in response to KLH in vitro. Furthermore, T cell–dependent production of DNP-specific human antibodies (mainly IgG1 and IgG2) was detected in all immunized mice. These results confirm that a functional human immune system can be established in immunodeficient mice through cotransplantation of human fetal thymus/liver tissues and CD34+ hematopoietic stem/progenitor cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2406-2406
Author(s):  
Giorgia Zanetti ◽  
Giuseppina Astone ◽  
Luca Cappelli ◽  
William Chiu ◽  
Maria Teresa Cacciapuoti ◽  
...  

Abstract Introduction: Immunotherapy is a promising therapeutic intervention for cancer treatment. Activation of the immune system via checkpoint blockade has been shown to produce antitumor responses in patients with both solid and hematological tumors. However, many patients do not respond to checkpoint inhibitors, and additional therapies are needed to treat these patients. Testing immunotherapies requires a functional human immune system; thus, it is difficult to evaluate their effectiveness using conventional experimental models. For this reason, establishing in vivo models that closely reproduce not only human tumors, but also their interactions with the human immune system, has become mandatory. Methods: We developed a humanized mouse model and combined it with a patient-derived tumor xenograft (PDTX). Humanized mice (HuMice) were generated by transplantation of cord blood or mobilized peripheral blood CD34+ hematopoietic stem and progenitor cells into preconditioned immunodeficient mice. We compared human engraftment in 3 different mouse strains: NSG (NOD.Cg-Prkdc scidIl2rg tm1Wjl/SzJ), NSGS (NOD.Cg-Prkdc scidIl2rg tm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ) and NBSGW (NOD.Cg-Kit W-41J Tyr + Prkdc scid Il2rg tm1Wjl/ThomJ). Immune cell profiling and distribution was performed using flow cytometry and immunohistochemistry. The B cell receptor (BCR) repertoire was evaluated using an RNA-based NGS assay. To evaluate the maturation and functionality of T cells developing in HuMice we performed proliferation, degranulation and intracellular cytokine staining. Results: Two months after CD34+ cell transplantation, we observed high levels of human hematopoietic chimerism in all the 3 strains. NSGS mice supported high-level chimerism as early as 1 month after transplantation, with more than 25% of human CD45+ cells in the blood. In all mice the majority of human circulating leukocytes were CD19+ B cells. An early appearance of CD3+ human T cells was detected in NSGS mice as compared to the other strains. Notably, the T cell expansion correlated with a decrease in relative B cell abundance while the myeloid cell contribution to the graft remained steady. We documented the differentiation of CD4+ and CD8+ human T cells at a 2:1 ratio. The characterization of the T cell subsets revealed that the majority was represented by CD45RA-CCR7- effector memory cells in both the spleen and the blood of HuMice. Nevertheless, recipient mice did not exhibit overt signs of graft-versus-host disease. We also evaluated the cytotoxic potential of T cells isolated from the spleen of HuMice: ex vivo peptide antigen (i.e. EBV) presentation let to generation of effective and specific cytotoxic T-cells. After assessing a functional human immune system reconstitution in HuMice, we challenged them in vivo with low-passage tumor fragments from a diffuse large B cell lymphoma (DLBCL) PDTX. All tumor implants were successfully engrafted in both HuMice and non-humanized controls. Remarkably, all the 3 HuMice strains showed a significant reduction in the tumor volume and/or eradication compared to matched non-humanized controls. Flow cytometry analysis of the peripheral blood of humanized PDTX revealed that the tumor engraftment elicited a significant expansion of CD3+ T cells and cytotoxic CD8+ lymphocytes. Moreover, tumors developing in HuMice exhibited intermediate to high levels of tumor infiltrating T lymphocytes commingling with the neoplastic B cells, as determined by immunohistochemistry. Large areas of necrosis were often observed in PDTX of HuMice. Infiltrating CD3+ cells were TIGIT, PD-1 and Lag-3 positive, and did not efficiently proliferate ex vivo: all features consistent with an exhaustion phenotype. PDTX of HuMice often displayed larger areas of necrosis. Conclusions: Collectively, our data demonstrate that a robust reconstitution can be achieved in different strains of immunocompromised mice and that HuMice elicit effective anti-lymphoma responses. PDTX HuMice represent a powerful platform to study host-tumor interactions, and to test novel immune-based strategies (CAR-T, bifunctional Abs) and new pharmacological approaches to counteract T-cell exhaustion. Figure 1 Figure 1. Disclosures Scandura: Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Constellation: Research Funding; MPN-RF (Foundation): Research Funding; CR&T (Foudation): Research Funding; European Leukemia net: Honoraria, Other: travel fees . Roth: Janssen: Consultancy; Merck: Consultancy.


2019 ◽  
Vol 374 (1773) ◽  
pp. 20180296 ◽  
Author(s):  
Donal McHugh ◽  
Nicole Caduff ◽  
Anita Murer ◽  
Christine Engelmann ◽  
Yun Deng ◽  
...  

Epstein–Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2–3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo . Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses’.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Juan-Carlos Biancotti ◽  
Terrence Town

Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCsex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCsin vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Krzysztof Laudanski ◽  
Michael Stentz ◽  
Matthew DiMeglio ◽  
William Furey ◽  
Toby Steinberg ◽  
...  

Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.


Sign in / Sign up

Export Citation Format

Share Document