scholarly journals CTCF controls imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains by modulating allele-specific sub-TAD structure

2019 ◽  
Author(s):  
David Llères ◽  
Benoît Moindrot ◽  
Rakesh Pathak ◽  
Vincent Piras ◽  
Mélody Matelot ◽  
...  

SUMMARYMammalian genomic imprinting is essential for development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. Here, we compared chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints—the Igf2-H19 and the Dlk1-Dio3 domains—and assessed the involvement of the insulator protein CTCF. At both domains, CTCF binds the maternal allele of a differentially-methylated region (DMR), in addition to multiple instances of bi-allelic CTCF binding in their surrounding TAD (Topologically Associating Domain). On the paternal chromosome, bi-allelic CTCF binding alone is sufficient to structure a first level of sub-TAD organization. Maternal-specific CTCF binding at the DMRs adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal sub-TAD organisation. Genome-editing experiments at the Dlk1-Dio3 locus confirm that the maternal sub-TADs are essential during development to maintain the imprinted Dlk1 gene in an inactive state on the maternal chromosome.


Reproduction ◽  
2010 ◽  
Vol 140 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Philippe Arnaud

The cis-acting regulatory sequences of imprinted gene loci, called imprinting control regions (ICRs), acquire specific imprint marks in germ cells, including DNA methylation. These epigenetic imprints ensure that imprinted genes are expressed exclusively from either the paternal or the maternal allele in offspring. The last few years have witnessed a rapid increase in studies on how and when ICRs become marked by and subsequently maintain such epigenetic modifications. These novel findings are summarised in this review, which focuses on the germline acquisition of DNA methylation imprints and particularly on the combined role of primary sequence specificity, chromatin configuration, non-histone proteins and transcriptional events.



2019 ◽  
Vol 5 (12) ◽  
pp. eaay7246 ◽  
Author(s):  
Zhiyuan Chen ◽  
Qiangzong Yin ◽  
Azusa Inoue ◽  
Chunxia Zhang ◽  
Yi Zhang

Faithful maintenance of genomic imprinting is essential for mammalian development. While germline DNA methylation–dependent (canonical) imprinting is relatively stable during development, the recently found oocyte-derived H3K27me3-mediated noncanonical imprinting is mostly transient in early embryos, with some genes important for placental development maintaining imprinted expression in the extraembryonic lineage. How these noncanonical imprinted genes maintain their extraembryonic-specific imprinting is unknown. Here, we report that maintenance of noncanonical imprinting requires maternal allele–specific de novo DNA methylation [i.e., somatic differentially methylated regions (DMRs)] at implantation. The somatic DMRs are located at the gene promoters, with paternal allele–specific H3K4me3 established during preimplantation development. Genetic manipulation revealed that both maternal EED and zygotic DNMT3A/3B are required for establishing somatic DMRs and maintaining noncanonical imprinting. Thus, our study not only reveals the mechanism underlying noncanonical imprinting maintenance but also sheds light on how histone modifications in oocytes may shape somatic DMRs in postimplantation embryos.



2021 ◽  
Author(s):  
Hollie Marshall ◽  
Moi T Nicholas ◽  
Jelle S van Zweden ◽  
Felix Wäckers ◽  
Laura Ross ◽  
...  

Genomic imprinting is defined as parent-of-origin allele-specific expression. In order for genes to be expressed in this manner an `imprinting' mark must be present to distinguish the parental alleles within the genome. In mammals imprinted genes are primarily associated with DNA methylation. Genes exhibiting parent-of-origin expression have recently been identified in two species of Hymenoptera with functional DNA methylation systems; Apis mellifera and Bombus terrestris. We carried out whole genome bisulfite sequencing of parents and offspring from reciprocal crosses of two B. terrestris subspecies in order to identify parent-of-origin DNA methylation. We were unable to survey a large enough proportion of the genome to draw a conclusion on the presence of parent-of-origin DNA methylation however we were able to characterise the sex- and caste-specific methylomes of B. terrestris for the first time. We find males differ significantly to the two female castes, with differentially methylated genes involved in many histone modification related processes. We also analysed previously generated honeybee whole genome bisulfite data to see if genes previously identified as showing parent-of-origin DNA methylation in the honeybee show consistent allele-specific methylation in independent data sets. We have identified a core set of 12 genes in female castes which may be used for future experimental manipulation to explore the functional role of parent-of-origin DNA methylation in the honeybee. Finally, we have also identified allele-specific DNA methylation in honeybee male thorax tissue which suggests a role for DNA methylation in ploidy compensation in this species.



2019 ◽  
Vol 20 (1) ◽  
Author(s):  
David Llères ◽  
Benoît Moindrot ◽  
Rakesh Pathak ◽  
Vincent Piras ◽  
Mélody Matelot ◽  
...  

Abstract Background Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints—the Igf2-H19 and Dlk1-Dio3 domains—and assessed the involvement of the insulator protein CTCF in mouse cells. Results Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. Conclusions Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.



1998 ◽  
Vol 18 (11) ◽  
pp. 6767-6776 ◽  
Author(s):  
Piroska E. Szabó ◽  
Gerd P. Pfeifer ◽  
Jeffrey R. Mann

ABSTRACT Genomic imprinting results in parent-specific monoallelic expression of a small number of genes in mammals. The identity of imprints is unknown, but much evidence points to a role for DNA methylation. The maternal alleles of the imprinted H19 gene are active and hypomethylated; the paternal alleles are inactive and hypermethylated. Roles for other epigenetic modifications are suggested by allele-specific differences in nuclease hypersensitivity at particular sites. To further analyze the possible epigenetic mechanisms determining monoallelic expression of H19, we have conducted in vivo dimethylsulfate and DNase I footprinting of regions upstream of the coding sequence in parthenogenetic and androgenetic embryonic stem cells. These cells carry only maternally and paternally derived alleles, respectively. We observed the presence of maternal-allele-specific dimethylsulfate and DNase I footprints at the promoter indicative of protein-DNA interactions at a CCAAT box and at binding sites for transcription factors Sp1 and AP-2. Also, at the boundary of a region further upstream for which existent differential methylation has been suggested to constitute an imprint, we observed a number of strand-specific dimethylsulfate reactivity differences specific to the maternal allele, along with an unusual chromatin structure in that both strands of maternally derived DNA were strongly hypersensitive to DNase I cutting over a distance of 100 nucleotides. We therefore reveal the existence of novel parent-specific epigenetic modifications, which in addition to DNA methylation, could constitute imprints or maintain monoallelic expression of H19.



2006 ◽  
Vol 15 (19) ◽  
pp. 2945-2954 ◽  
Author(s):  
Nora Engel ◽  
Joanne L. Thorvaldsen ◽  
Marisa S. Bartolomei


Author(s):  
Hisato Kobayashi

Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.



2015 ◽  
Vol 27 (1) ◽  
pp. 254 ◽  
Author(s):  
F. F. Bressan ◽  
J. Therrien ◽  
F. Filion ◽  
F. Perecin ◽  
L. C. Smith ◽  
...  

Pluripotency reacquisition of somatic cells has been achieved through nuclear transfer (NT) to oocytes and, more recently, through induction with pluripotency-related factors (iPS cells). However, the epigenetic reprogramming process that enables the derivation of both NT-derived cloned animals and iPS cells is usually incomplete, leading to unhealthy offspring and poorly reprogrammed iPS cell lines. These unfavourable outcomes result in part from abnormal genome DNA methylation that leads to aberrant gene expression patterns. For instance, differentially methylated regions (DMR) and monoalleleic expression of imprinted genes, essential for normal cellular commitment and early development, are thought to be severely disturbed by reprogramming techniques. Indeed, H19 and SNRPN, imprinted genes, were disturbed in bovine NT-derived embryos and fetuses. Herein we investigated whether the DMR and parent-of-origin expression of the imprinted genes H19 and SNRPN are also perturbed in iPS lines. To analyse the DMR methylation patterns and allelic expression of H19 and SNRPN using parental-specific polymorphisms, we derived multiple clones of bovine iPS (biPS) cells from an interspecies (Bos indicus × Bos taurus) fetal fibroblast (bFF) using transduction with a policystronic lentivirus containing mouse Oct4, Sox2 c-Myc, and Klf-4 transcription factors. The DNA methylation patterns were evaluated by bisulfite sequencing and allelic expression by designing allele-specific PCR probes. We also quantified transcript expression by RT-PCR of H19, IGF2, SNRPN, OCT4, and NANOG by normalization with 3 housekeeping genes (GAPDH, NAT1, and ACTB). The biPS lines were characterised by a high nuclear : cytoplasmic ratio, dome-shaped colonies, positive AP activity, embryoid body formation, in vitro and in vivo (teratoma) formation, and expression of pluripotency-related genes. Compared to the bFF cells, methylation analyses of H19 showed partial hypomethylation of the paternal DMR on 1 iPS cell line and partial demethylation of the CTCF-binding region in the DMR of 2 other biPS lines, indicating abnormal demethylation of 3 out of the 4 biPS lines analysed. Methylation analyses of SNRPN revealed a partial hypomethylation in the maternal DMR and partial hypermethylation of the paternal DMR in 2 iPS lines. Gene expression analyses revealed the biallelic expression of H19 and decreased global expression of both H19 and IGF2, as well as the exclusively monoallelic paternal expression and significant increase in global expression of SNRPN. Interestingly, although OCT4 was substantially overexpressed in biPS lines, we identified a hypermethylation of the CG-rich region of the OCT4 exon 1. Endogenous NANOG expression was observed in 2 biPS clones. We conclude that imprinting errors are observed in biPS clones, suggesting that these epigenetic anomalies are related to the reprogramming process and could be directly responsible for the variable phenotypes and low success rates of both cloning and iPS derivation procedures.Financial support was from NSERC, FAPESP (13/13686-8, 11/08376-4, 57877-3/2008, 08.135-2/2013), CNPq (573754/2008-0, 482163/2013-5).



Epigenomics ◽  
2021 ◽  
Author(s):  
Tie-Bo Zeng ◽  
Nicholas Pierce ◽  
Ji Liao ◽  
Piroska E Szabó

Aim: Paternal allele-specific expression of noncanonical imprinted genes in the extraembryonic lineages depends on an H3K27me3-based imprint in the oocyte, which is not a lasting mark. We hypothesized that EHMT2, the main euchromatic H3K9 dimethyltransferase, also has a role in controlling noncanonical imprinting. Methods: We carried out allele-specific total RNA-seq analysis in the ectoplacental cone of somite-matched 8.5 days post coitum embryos using reciprocal mouse crosses. Results: We found that the maternal allele of noncanonical imprinted genes was derepressed from its ERVK promoter in the Ehmt2-/- ectoplacental cone. In Ehmt2-/- embryos, loss of DNA methylation accompanied biallelic derepression of the ERVK promoters. Canonical imprinting and imprinted X chromosome inactivation were generally undisturbed. Conclusion: EHMT2 is essential for repressing the maternal allele in noncanonical imprinting.



Sign in / Sign up

Export Citation Format

Share Document