scholarly journals Characterization of Novel Parent-Specific Epigenetic Modifications Upstream of the Imprinted Mouse H19Gene

1998 ◽  
Vol 18 (11) ◽  
pp. 6767-6776 ◽  
Author(s):  
Piroska E. Szabó ◽  
Gerd P. Pfeifer ◽  
Jeffrey R. Mann

ABSTRACT Genomic imprinting results in parent-specific monoallelic expression of a small number of genes in mammals. The identity of imprints is unknown, but much evidence points to a role for DNA methylation. The maternal alleles of the imprinted H19 gene are active and hypomethylated; the paternal alleles are inactive and hypermethylated. Roles for other epigenetic modifications are suggested by allele-specific differences in nuclease hypersensitivity at particular sites. To further analyze the possible epigenetic mechanisms determining monoallelic expression of H19, we have conducted in vivo dimethylsulfate and DNase I footprinting of regions upstream of the coding sequence in parthenogenetic and androgenetic embryonic stem cells. These cells carry only maternally and paternally derived alleles, respectively. We observed the presence of maternal-allele-specific dimethylsulfate and DNase I footprints at the promoter indicative of protein-DNA interactions at a CCAAT box and at binding sites for transcription factors Sp1 and AP-2. Also, at the boundary of a region further upstream for which existent differential methylation has been suggested to constitute an imprint, we observed a number of strand-specific dimethylsulfate reactivity differences specific to the maternal allele, along with an unusual chromatin structure in that both strands of maternally derived DNA were strongly hypersensitive to DNase I cutting over a distance of 100 nucleotides. We therefore reveal the existence of novel parent-specific epigenetic modifications, which in addition to DNA methylation, could constitute imprints or maintain monoallelic expression of H19.

2003 ◽  
Vol 23 (16) ◽  
pp. 5475-5488 ◽  
Author(s):  
Candice Coombes ◽  
Philippe Arnaud ◽  
Emma Gordon ◽  
Wendy Dean ◽  
Elizabeth A. Coar ◽  
...  

ABSTRACT The Gnas locus in the mouse is imprinted with a complex arrangement of alternative transcripts defined by promoters with different patterns of monoallelic expression. The Gnas transcript is subject to tissue-specific imprinted expression, Nesp is expressed only from the maternal allele, and Gnasxl is expressed only from the paternal allele. The mechanisms controlling these expression patterns are not known. To identify potential imprinting regulatory regions, particularly for the reciprocally expressed Nesp and Gnasxl promoters, we examined epigenetic properties of the locus in gametes, embryonic stem cells, and fetal and adult tissues. The Nesp and Gnasxl promoter regions are contained in extensive CpG islands with methylation of the paternal allele at Nesp and the maternal allele at Gnasxl. Parental allele-specific DNase I-hypersensitive sites were found at these regions, which correlate with hypomethylation rather than actual expression status. A germ line methylation mark was identified covering the promoters for Gnasxl and the antisense transcript Nespas. Prominent DNase I-hypersensitive sites present on paternal alleles in embryonic stem cells are contained within this mark. This is the second gametic mark identified at Gnas and suggests that the Nesp and Gnasxl promoters are under separate control from the Gnas promoter. We propose models to account for the regulation of imprinting at the locus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Bourguet ◽  
Colette L. Picard ◽  
Ramesh Yelagandula ◽  
Thierry Pélissier ◽  
Zdravko J. Lorković ◽  
...  

AbstractIn flowering plants, heterochromatin is demarcated by the histone variant H2A.W, elevated levels of the linker histone H1, and specific epigenetic modifications, such as high levels of DNA methylation at both CG and non-CG sites. How H2A.W regulates heterochromatin organization and interacts with other heterochromatic features is unclear. Here, we create a h2a.w null mutant via CRISPR-Cas9, h2a.w-2, to analyze the in vivo function of H2A.W. We find that H2A.W antagonizes deposition of H1 at heterochromatin and that non-CG methylation and accessibility are moderately decreased in h2a.w-2 heterochromatin. Compared to H1 loss alone, combined loss of H1 and H2A.W greatly increases accessibility and facilitates non-CG DNA methylation in heterochromatin, suggesting co-regulation of heterochromatic features by H2A.W and H1. Our results suggest that H2A.W helps maintain optimal heterochromatin accessibility and DNA methylation by promoting chromatin compaction together with H1, while also inhibiting excessive H1 incorporation.


1988 ◽  
Vol 8 (4) ◽  
pp. 1534-1539
Author(s):  
G Albrecht ◽  
B Devaux ◽  
C Kedinger

We used DNase I footprinting assays on nuclei isolated from adenovirus-infected cells to examine the nucleoprotein configuration of a 250-base-pair segment which encompasses the adenovirus type 5 major late (ML) and IVa2 promoters. At 12 and 20 h postinfection (p.i.), fine DNase I digestion mapping of wild-type adenovirus-infected cells revealed specific sequences protected from digestion which corresponded to promoter elements required for expression of the ML gene in vivo. At 12 h p.i., a G+C-rich region which lies upstream of the IVa2 cap site and is important for maximal IVa2 activity was also found masked to nuclease activity. At 20 h p.i., however, this element became more sensitive to nuclease attack, while the ML promoter elements stayed protected. No major changes in DNA-protein interactions were detected in the region spanning the ML and IVa2 cap sites upon promoter activation, suggesting that the binding properties of the cognate factors for this region are not modified during the process.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Meng Liu ◽  
Peipei Zhang ◽  
Yanping Zhu ◽  
Ting Lu ◽  
Yemin Wang ◽  
...  

ABSTRACTAs with most annotated two-component systems (TCSs) ofStreptomyces coelicolor, the function of TCS SCO2120/2121 was unknown. Based on our findings, we have designated this TCS MacRS, formorphogenesis andactinorhodin regulator/sensor. Our study indicated that either single or double mutation of MacRS largely blocked production of actinorhodin but enhanced formation of aerial mycelium. Chromatin immunoprecipitation (ChIP) sequencing, using anS. coelicolorstrain expressing MacR-Flag fusion protein, identifiedin vivotargets of MacR, and DNase I footprinting of these targets revealed a consensus sequence for MacR binding, TGAGTACnnGTACTCA, containing two 7-bp inverted repeats. A genome-wide search revealed sites identical or highly similar to this consensus sequence upstream of six genes encoding putative membrane proteins or lipoproteins. These predicted sites were confirmed as MacR binding sites by DNase I footprinting and electrophoretic mobility shift assaysin vitroand by ChIP-quantitative PCRin vivo, and transcriptional analyses demonstrated that MacR significantly impacts expression of these target genes. Disruption of three of these genes,sco6728,sco4924, andsco4011, markedly accelerated aerial mycelium formation, indicating that their gene products are novel morphogenic factors. Two-hybrid assays indicated that these three proteins, which we have named morphogenic membrane protein A (MmpA; SCO6728), MmpB (SCO4924), and MmpC (SCO4011), interact with one another and with the putative membrane protein and MacR target SCO4225. Notably, SAV6081/82 and SVEN1780/81, homologs of MacRS TCS fromS. avermitilisandS. venezuelae, respectively, can substitute for MacRS, indicating functional conservation. Our findings reveal a role for MacRS in cellular morphogenesis and secondary metabolism inStreptomyces.IMPORTANCETCSs help bacteria adapt to environmental stresses by altering gene expression. However, the roles and corresponding regulatory mechanisms of most TCSs in theStreptomycesmodel strainS. coelicolorare unknown. We investigated the previously uncharacterized MacRS TCS and identified the core DNA recognition sequence, two seven-nucleotide inverted repeats, for the DNA-binding protein MacR. We further found that MacR directly controls a group of membrane proteins, including MmpA-C, which are novel morphogenic factors that delay formation of aerial mycelium. We also discovered that these membrane proteins interact with one another and that otherStreptomycesspecies have conserved MacRS homologs. Our findings suggest a conserved role for MacRS in morphogenesis and/or other membrane-associated activities. Additionally, our study showed that MacRS impacts, albeit indirectly, the production of the signature metabolite actinorhodin, further suggesting that MacRS and its homologs function as novel pleiotropic regulatory systems inStreptomyces.


2007 ◽  
Vol 189 (14) ◽  
pp. 5060-5067 ◽  
Author(s):  
M. Carolina Pilonieta ◽  
Maria D. Bodero ◽  
George P. Munson

ABSTRACT H10407 is a strain of enterotoxigenic Escherichia coli (ETEC) that utilizes CFA/I pili to adhere to surfaces of the small intestine, where it elaborates toxins that cause profuse watery diarrhea in humans. Expression of the CFA/I pilus is positively regulated at the level of transcription by CfaD, a member of the AraC/XylS family. DNase I footprinting revealed that the activator has two binding sites upstream of the pilus promoter cfaAp. One site extends from positions −23 to −56, and the other extends from positions −73 to −103 (numbering relative to the transcription start site of cfaAp). Additional CfaD binding sites were predicted within the genome of H10407 by computational analysis. Two of these sites lie upstream of a previously uncharacterized gene, cexE. In vitro DNase I footprinting confirmed that both sites are genuine binding sites, and cexEp::lacZ reporters demonstrated that CfaD is required for the expression of cexE in vivo. The amino terminus of CexE contains a secretory signal peptide that is removed during translocation across the cytoplasmic membrane through the general secretory pathway. These studies suggest that CexE may be a novel ETEC virulence factor because its expression is controlled by the virulence regulator CfaD, and its distribution is restricted to ETEC.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 56 ◽  
Author(s):  
Megan Culbreth ◽  
Michael Aschner

Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay7246 ◽  
Author(s):  
Zhiyuan Chen ◽  
Qiangzong Yin ◽  
Azusa Inoue ◽  
Chunxia Zhang ◽  
Yi Zhang

Faithful maintenance of genomic imprinting is essential for mammalian development. While germline DNA methylation–dependent (canonical) imprinting is relatively stable during development, the recently found oocyte-derived H3K27me3-mediated noncanonical imprinting is mostly transient in early embryos, with some genes important for placental development maintaining imprinted expression in the extraembryonic lineage. How these noncanonical imprinted genes maintain their extraembryonic-specific imprinting is unknown. Here, we report that maintenance of noncanonical imprinting requires maternal allele–specific de novo DNA methylation [i.e., somatic differentially methylated regions (DMRs)] at implantation. The somatic DMRs are located at the gene promoters, with paternal allele–specific H3K4me3 established during preimplantation development. Genetic manipulation revealed that both maternal EED and zygotic DNMT3A/3B are required for establishing somatic DMRs and maintaining noncanonical imprinting. Thus, our study not only reveals the mechanism underlying noncanonical imprinting maintenance but also sheds light on how histone modifications in oocytes may shape somatic DMRs in postimplantation embryos.


1986 ◽  
Vol 6 (6) ◽  
pp. 2098-2105 ◽  
Author(s):  
A G Wildeman ◽  
M Zenke ◽  
C Schatz ◽  
M Wintzerith ◽  
T Grundström ◽  
...  

HeLa cell nuclear extracts and wild-type or mutated simian virus 40 enhancer DNA were used in DNase I footprinting experiments to study the interaction of putative trans-acting factors with the multiple enhancer motifs. We show that these nuclear extracts contain proteins that bind to these motifs. Because point mutations which are detrimental to the activity of a particular enhancer motif in vivo specifically prevent protection of that motif against DNase I digestion in vivo, we suggest that the bound proteins correspond to trans-acting factors involved in enhancement of transcription. Using mutants in which the two domains A and B of the simian virus 40 enhancer are either separated by insertion of DNA fragments or inverted with respect to their natural orientation, we also demonstrate that the trans-acting factors bind independently to the two domains.


2017 ◽  
Vol 29 (6) ◽  
pp. 1260 ◽  
Author(s):  
Yanfang Huang ◽  
Xiaohong Jiang ◽  
Miao Yu ◽  
Rongfu Huang ◽  
Jianfeng Yao ◽  
...  

Somatic cell nuclear transfer is frequently associated with abnormal epigenetic modifications that may lead to the developmental failure of cloned embryos. BIX-01294 (a diazepine–quinazoline–amine derivative) is a specific inhibitor of the histone methyltransferase G9a. The aim of the present study was to investigate the effects of BIX-01294 on development, dimethylation of histone H3 at lysine 9 (H3K9), DNA methylation and the expression of imprinted genes in cloned mouse preimplantation embryos. There were no significant differences in blastocyst rates of cloned embryos treated with or without 0.1 μM BIX-01294. Relative to clone embryos treated without 0.1 μM BIX-01294, exposure of embryos to BIX-01294 decreased histone H3K9 dimethylation and DNA methylation in cloned embryos to levels that were similar to those of in vivo-fertilised embryos at the 2-cell and blastocyst stages. Cloned embryos had lower expression of octamer-binding transcription factor 4 (Oct4) and small nuclear ribonucleoprotein N (Snrpn), but higher expression of imprinted maternally expressed transcript (non-protein coding) (H19) and growth factor receptor-bound protein 10 (Grb10) compared with in vivo-fertilised counterparts. The addition of 0.1 μM BIX-01294 to the activation and culture medium resulted in lower H19 expression and higher cyclin dependent kinase inhibitor 1C (Cdkn1c) and delta-like 1 homolog (Dlk1) expression, but had no effect on the expression of Oct4, Snrpn and Grb10. The loss of methylation at the Grb10 cytosine–phosphorous–guanine (CpG) islands in cloned embryos was partially corrected by BIX-01294. These results indicate that BIX-01294 treatment of cloned embryos has beneficial effects in terms of correcting abnormal epigenetic modifications, but not on preimplantation development.


1988 ◽  
Vol 8 (4) ◽  
pp. 1534-1539 ◽  
Author(s):  
G Albrecht ◽  
B Devaux ◽  
C Kedinger

We used DNase I footprinting assays on nuclei isolated from adenovirus-infected cells to examine the nucleoprotein configuration of a 250-base-pair segment which encompasses the adenovirus type 5 major late (ML) and IVa2 promoters. At 12 and 20 h postinfection (p.i.), fine DNase I digestion mapping of wild-type adenovirus-infected cells revealed specific sequences protected from digestion which corresponded to promoter elements required for expression of the ML gene in vivo. At 12 h p.i., a G+C-rich region which lies upstream of the IVa2 cap site and is important for maximal IVa2 activity was also found masked to nuclease activity. At 20 h p.i., however, this element became more sensitive to nuclease attack, while the ML promoter elements stayed protected. No major changes in DNA-protein interactions were detected in the region spanning the ML and IVa2 cap sites upon promoter activation, suggesting that the binding properties of the cognate factors for this region are not modified during the process.


Sign in / Sign up

Export Citation Format

Share Document