scholarly journals cfrB, cfrC, and a potential new cfr-like gene in Clostridium difficile strains recovered across Latin America

2019 ◽  
Author(s):  
Vanja Stojković ◽  
María Fernanda Ulate ◽  
Fanny Hidalgo-Villeda ◽  
Emmanuel Aguilar ◽  
Camilo Monge-Cascante ◽  
...  

ABSTRACTCfr is a radical S-adenosyl-L-methionine (SAM) enzyme that confers cross-resistance to all antibiotics targeting the large ribosomal subunit through hypermethylation of nucleotide A2503 of 23S rRNA. Of the four known cfr genes known to date, cfr(B) and cfr(C) have been sporadically found in C. difficile, yet functional characterization of cfr(C) is still lacking. We identified genes for putative Cfr-like enzymes among clinical C. difficile strains from Mexico, Honduras, Costa Rica, and Chile. To confirm their identity and activity, we obtained minimum inhibitory concentrations for ribosome-targeting antibiotics, annotated whole genome sequences, and performed a functional characterization of Cfr(C). The seven representative isolates analyzed displayed different levels of resistance to PhLOPSA antibiotics in the absence of the ribosome protection factor OptrA, and mutations in genes for 23S rRNAs or the ribosomal proteins L3 and L4. cfr(B) was detected in four isolates as part of a Tn6218-like transposon or an un-described mobile genetic element. In turn, cfr(C) was found integrated into an ICE-element. One isolate harbored a putative cfr-like gene that shows only 51-58% of sequence identity to Cfr and known Cfr-like enzymes. Moreover, our in vitro assays confirmed that Cfr(C) methylates E. coli and C. difficile 23S rRNA fragments. These results indicate selection of cfr-like genes in C. difficile from Latin America, suggest that the diversity of cfr-like resistance genes is larger than anticipated, and provide the first assessment of the methylation activity of Cfr(C).

2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Vanja Stojković ◽  
María Fernanda Ulate ◽  
Fanny Hidalgo-Villeda ◽  
Emmanuel Aguilar ◽  
Camilo Monge-Cascante ◽  
...  

ABSTRACT Cfr is a radical S-adenosyl-l-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three cfr-like genes implicated in antibiotic resistance have been described, two of which, cfr(B) and cfr(C), have been sporadically detected in Clostridium difficile. However, the methylase activity of Cfr(C) has not been confirmed. We found cfr(B), cfr(C), and a cfr-like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical C. difficile isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile. This new resistance gene was termed cfr(E). In agreement with the anticipated function of the cfr-like genes detected, all isolates exhibited high MIC values for several ribosome-targeting antibiotics. In addition, in vitro assays confirmed that Cfr(C) and Cfr(E) methylate Escherichia coli and, to a lesser extent, C. difficile 23S rRNA fragments at the expected positions. The analyzed isolates do not have mutations in 23S rRNA genes or genes encoding the ribosomal proteins L3 and L4 and lack poxtA, optrA, and pleuromutilin resistance genes. Moreover, these cfr-like genes were found in Tn6218-like transposons or integrative and conjugative elements (ICE) that could facilitate their transfer. These results indicate selection of potentially mobile cfr-like genes in C. difficile from Latin America and provide the first assessment of the methylation activity of Cfr(C) and Cfr(E), which belong to a cluster of Cfr-like proteins that does not include the functionally characterized enzymes Cfr, Cfr(B), and Cfr(D).


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2006 ◽  
Vol 396 (3) ◽  
pp. 565-571 ◽  
Author(s):  
Takaomi Nomura ◽  
Kohji Nakano ◽  
Yasushi Maki ◽  
Takao Naganuma ◽  
Takashi Nakashima ◽  
...  

We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0·Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0·Ph-L12 complex and Ph-L11 could replace L10·L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.


1973 ◽  
Vol 133 (4) ◽  
pp. 739-747 ◽  
Author(s):  
A. Robinson ◽  
J. Sykes

1. The behaviour of the large ribosomal subunit from Rhodopseudomonas spheroides (45S) has been compared with the 50S ribosome from Escherichia coli M.R.E. 600 (and E. coli M.R.E. 162) during unfolding by removal of Mg2+ and detachment of ribosomal proteins by high univalent cation concentrations. The extent to which these processes are reversible with these ribosomes has also been examined. 2. The R. spheroides 45S ribosome unfolds relatively slowly but then gives rise directly to two ribonucleoprotein particles (16.6S and 13.7S); the former contains the intact primary structure of the 16.25S rRNA species and the latter the 15.00S rRNA species of the original ribosome. No detectable protein loss occurs during unfolding. The E. coli ribosome unfolds via a series of discrete intermediates to a single, unfolded ribonucleoprotein unit (19.1S) containing the 23S rRNA and all the protein of the original ribosome. 3. The two unfolded R. spheroides ribonucleoproteins did not recombine when the original conditions were restored but each simply assumed a more compact configuration. Similar treatments reversed the unfolding of the E. coli 50S ribosomes; replacement of Mg2+ caused the refolding of the initial products of unfolding and in the presence of Ni2+ the completely unfolded species (19.1S) again sedimented at the same rate as the original ribosomes (44S). 4. Ribosomal proteins (25%) were dissociated from R. spheroides 45S ribosomes by dialysis against a solution with a Na+/Mg2+ ratio of 250:1. During this process two core particles were formed (21.2S and 14.2S) and the primary structures of the two original rRNA species were conserved. This dissociation was not reversed. With E. coli 50S approximately 15% of the original ribosomal protein was dissociated, a single 37.6S core particle was formed, the 23S rRNA remained intact and the ribosomal proteins would reassociate with the core particle to give a 50S ribosome. 5. The ribonuclease activities in R. spheroides 45S and E. coli M.R.E. 600 and E. coli M.R.E. 162 50S ribosomes are compared. 6. The observations concerning unfolding and dissociation are consistent with previous reports showing the unusual rRNA complement of the mature R. spheroides 45S ribosome and show the dependence of these events upon the rRNA and the importance of protein–protein interactions in the structure of the R. spheroides ribosome.


2020 ◽  
Author(s):  
Martin Rieu ◽  
Jessica Valle-Orero ◽  
Bertrand Ducos ◽  
Jean-François Allemand ◽  
Vincent Croquette

ABSTRACTFluorescence-free micro-manipulation of nucleic acids (NA) allows the functional characterization of DNA/RNA processing proteins, without the interference of labels, but currently fails to detect and quantify their binding. To overcome this limitation, we developed a new method based on single-molecule force spectroscopy, called kinetic locking, that allows a direct in vitro visualization of protein binding while avoiding any kind of chemical disturbance of the protein’s natural function. We validate kinetic locking by measuring accurately the hybridization energy of ultrashort nucleotides (5,6,7 bases) and use it to measure the dynamical interactions of E. coli RecQ helicase with its DNA substrate.


1999 ◽  
Vol 181 (20) ◽  
pp. 6387-6395 ◽  
Author(s):  
S. Schubert ◽  
D. Fischer ◽  
J. Heesemann

ABSTRACT Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of theYersinia fep-fes gene cluster orthologous to theEscherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded byfepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD,fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD orfes genes abrogates enterochelin-supported growth ofY. enterocolitica on iron-chelated media. In contrast toE. coli, the fep-fes gene cluster inY. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, andYersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the familyEnterobacteriaceae.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Rieu ◽  
Jessica Valle-Orero ◽  
Bertrand Ducos ◽  
Jean-François Allemand ◽  
Vincent Croquette

AbstractFluorescence-free micro-manipulation of nucleic acids (NA) allows the functional characterization of DNA/RNA processing proteins, without the interference of labels, but currently fails to detect and quantify their binding. To overcome this limitation, we developed a method based on single-molecule force spectroscopy, called kinetic locking, that allows a direct in vitro visualization of protein binding while avoiding any kind of chemical disturbance of the protein’s natural function. We validate kinetic locking by measuring accurately the hybridization energy of ultrashort nucleotides (5, 6, 7 bases) and use it to measure the dynamical interactions of Escherichia coli/E. coli RecQ helicase with its DNA substrate.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1430 ◽  
Author(s):  
Marlène Deschuyter ◽  
Florian Pennarubia ◽  
Emilie Pinault ◽  
Sébastien Legardinier ◽  
Abderrahman Maftah

Background: Protein O-fucosyltransferase 1 (POFUT1) overexpression, which is observed in many cancers such as colorectal cancer (CRC), leads to a NOTCH signaling dysregulation associated with the tumoral process. In rare CRC cases, with no POFUT1 overexpression, seven missense mutations were found in human POFUT1. Methods: Recombinant secreted forms of human WT POFUT1 and its seven mutated counterparts were produced and purified. Their O-fucosyltransferase activities were assayed in vitro using a chemo-enzymatic approach with azido-labeled GDP-fucose as a donor substrate and NOTCH1 EGF-LD26, produced in E. coli periplasm, as a relevant acceptor substrate. Targeted mass spectrometry (MS) was carried out to quantify the O-fucosyltransferase ability of all POFUT1 proteins. Findings: MS analyses showed a significantly higher O-fucosyltransferase activity of six POFUT1 variants (R43H, Y73C, T115A, I343V, D348N, and R364W) compared to WT POFUT1. Interpretation: This study provides insights on the possible involvement of these seven missense mutations in colorectal tumors. The hyperactive forms could lead to an increased O-fucosylation of POFUT1 protein targets such as NOTCH receptors in CRC patients, thereby leading to a NOTCH signaling dysregulation. It is the first demonstration of gain-of-function mutations for this crucial glycosyltransferase, modulating NOTCH activity, as well as that of other potential glycoproteins.


2021 ◽  
Vol 22 (2) ◽  
pp. 681
Author(s):  
Vaishnavi Amarr Reddy ◽  
Chunhong Li ◽  
Kumar Nadimuthu ◽  
Jessica Gambino Tjhang ◽  
In-Cheol Jang ◽  
...  

Production of a volatile phenylpropene; eugenol in sweet basil is mostly associated with peltate glandular trichomes (PGTs) found aerially. Currently only one eugenol synthase (EGS), ObEGS1 which belongs to PIP family is identified from sweet basil PGTs. Reports of the presence of eugenol in roots led us to analyse other EGSs in roots. We screened for all the PIP family reductase transcripts from the RNA-Seq data. In vivo functional characterization of all the genes in E. coli showed their ability to produce eugenol and were termed as ObEGS2-8. Among all, ObEGS1 displayed highest expression in PGTs and ObEGS4 in roots. Further, eugenol was produced only in the roots of soil-grown plants, but not in roots of aseptically-grown plants. Interestingly, eugenol production could be induced in roots of aseptically-grown plants under elicitation suggesting that eugenol production might occur as a result of environmental cues in roots. The presence of ObEGS4 transcript and protein in aseptically-grown plants indicated towards post-translational modifications (PTMs) of ObEGS4. Bioinformatics analysis showed possibility of phosphorylation in ObEGS4 which was further confirmed by in vitro experiment. Our study reveals the presence of multiple eugenol synthases in sweet basil and provides new insights into their diversity and tissue specific regulation.


Genetics ◽  
1989 ◽  
Vol 123 (2) ◽  
pp. 281-292 ◽  
Author(s):  
E H Harris ◽  
B D Burkhart ◽  
N W Gillham ◽  
J E Boynton

Abstract Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.


Sign in / Sign up

Export Citation Format

Share Document