scholarly journals Behavioral and neural signatures of working memory in childhood

2019 ◽  
Author(s):  
Monica D. Rosenberg ◽  
Steven A. Martinez ◽  
Kristina M. Rapuano ◽  
May I. Conley ◽  
Alexandra O. Cohen ◽  
...  

AbstractWorking memory function changes across development and varies across individuals. The patterns of behavior and brain function that track individual differences in working memory during development, however, are not well understood. Here we establish associations between working memory, cognitive abilities, and functional MRI activation in data from over 4,000 9–10-year-olds enrolled in the Adolescent Brain Cognitive Development study, an ongoing longitudinal study in the United States. Behavioral analyses reveal robust relationships between working memory, short-term memory, language skills, and fluid intelligence. Analyses relating out-of-scanner working memory performance to memory-related fMRI activation in an emotional n-back task demonstrate that frontoparietal activity in response to an explicit memory challenge indexes working memory ability. Furthermore, this relationship is domain-specific, such that fMRI activation related to emotion processing during the emotional n-back task, inhibitory control during a stop-signal task, and reward processing during a monetary incentive delay task does not track memory abilities. Together these results inform our understanding of the emergence of individual differences in working memory and lay the groundwork for characterizing the ways in which they change across adolescence.

2021 ◽  
Vol 118 (49) ◽  
pp. e2110811118
Author(s):  
Young Hye Kwon ◽  
Kwangsun Yoo ◽  
Hillary Nguyen ◽  
Yong Jeong ◽  
Marvin M. Chun

While there is a substantial amount of work studying multilingualism’s effect on cognitive functions, little is known about how the multilingual experience modulates the brain as a whole. In this study, we analyzed data of over 1,000 children from the Adolescent Brain Cognitive Development (ABCD) Study to examine whether monolinguals and multilinguals differ in executive function, functional brain connectivity, and brain–behavior associations. We observed significantly better performance from multilingual children than monolinguals in working-memory tasks. In one finding, we were able to classify multilinguals from monolinguals using only their whole-brain functional connectome at rest and during an emotional n-back task. Compared to monolinguals, the multilingual group had different functional connectivity mainly in the occipital lobe and subcortical areas during the emotional n-back task and in the occipital lobe and prefrontal cortex at rest. In contrast, we did not find any differences in behavioral performance and functional connectivity when performing a stop-signal task. As a second finding, we investigated the degree to which behavior is reflected in the brain by implementing a connectome-based behavior prediction approach. The multilingual group showed a significant correlation between observed and connectome-predicted individual working-memory performance scores, while the monolingual group did not show any correlations. Overall, our observations suggest that multilingualism enhances executive function and reliably modulates the corresponding brain functional connectome, distinguishing multilinguals from monolinguals even at the developmental stage.


2020 ◽  
Vol 32 (2) ◽  
pp. 241-255 ◽  
Author(s):  
Emily W. Avery ◽  
Kwangsun Yoo ◽  
Monica D. Rosenberg ◽  
Abigail S. Greene ◽  
Siyuan Gao ◽  
...  

Individual differences in working memory relate to performance differences in general cognitive ability. The neural bases of such individual differences, however, remain poorly understood. Here, using a data-driven technique known as connectome-based predictive modeling, we built models to predict individual working memory performance from whole-brain functional connectivity patterns. Using n-back or rest data from the Human Connectome Project, connectome-based predictive models significantly predicted novel individuals' 2-back accuracy. Model predictions also correlated with measures of fluid intelligence and, with less strength, sustained attention. Separate fluid intelligence models predicted working memory score, as did sustained attention models, again with less strength. Anatomical feature analysis revealed significant overlap between working memory and fluid intelligence models, particularly in utilization of prefrontal and parietal regions, and less overlap in predictive features between working memory and sustained attention models. Furthermore, showing the generality of these models, the working memory model developed from Human Connectome Project data generalized to predict memory in an independent data set of 157 older adults (mean age = 69 years; 48 healthy, 54 amnestic mild cognitive impairment, 55 Alzheimer disease). The present results demonstrate that distributed functional connectivity patterns predict individual variation in working memory capability across the adult life span, correlating with constructs including fluid intelligence and sustained attention.


2021 ◽  
Author(s):  
Omid Kardan ◽  
Andrew J Stier ◽  
Carlos Cardenas-Inigues ◽  
Julia C Pruin ◽  
Kathryn E Schertz ◽  
...  

Sustained attention and working memory are central cognitive processes that vary between individuals, fluctuate over time, and have consequences for life and health outcomes. Here we characterize the functional brain architecture of these abilities in 9-11-year-old children using models based on functional magnetic resonance imaging functional connectivity. Using data from the Adolescent Brain Cognitive Development (ABCD) Study, we asked whether connectome-based models built to predict sustained attention and working memory in adults generalize to capture inter- and intra-individual differences in sustained attention and working memory performance in youth. Results revealed that a predefined connectome-based model of sustained attention predicted children's performance on the 0-back task, an attentionally taxing low-working-memory-load task. A predefined connectome-based model of working memory, on the other hand, also predicted performance on the 2-back task, an attentionally taxing high-working-memory-load task. The sustained attention model's predictive power was comparable to that achieved when predicting adults' 0-back performance and by a connectome-based model of cognition defined in the ABCD sample itself. Finally, the working memory model predicted children's recognition memory for n-back task stimuli. Together these results demonstrate that connectome-based models of sustained attention and working memory generalize to youth, reflecting the functional architecture of these processes in the developing brain.


2018 ◽  
Author(s):  
David Martinez ◽  
Jenny Singleton

A considerable amount of research has been devoted to understanding individual differences in lexical learning, however, the majority of this research has been conducted with spoken languages rather than signed languages and thus we know very little about the cognitive processes involved in sign learning or the extent to which lexical learning processes are specific to word learning. The present study was conducted to address this gap. Two-hundred thirty-six non-signing adults completed 25 tasks assessing word learning and sign learning (via associative learning paradigms) as well as modality-specific phonological short-term memory, working memory capacity, crystallized intelligence, and fluid intelligence. Latent variable analyses indicated that, when other variables were held constant, fluid intelligence was predictive of both word and sign learning, however, modality-specific phonological short-term memory factors were only predictive of lexical learning within modality—none of the other variables made significant independent contributions. It was further observed that sign and word learning were strongly correlated. Exploratory analyses revealed that all lexical learning tasks loaded onto a general factor, however, sign learning tasks loaded onto an additional specific factor. As such, this study provides insight into the cognitive components that are common to associative L2 lexical learning regardless of language modality and those that are unique to either signed or spoken languages. Results are further discussed in light of established and more recent theories of intelligence, short-term memory, and working memory.


2021 ◽  
Author(s):  
◽  
Hanna Squire

<p>Rationale: (±) 3,4-methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a recreationally abused psychostimulant that leads to detrimental effects on memory performance. MDMA’s acute effects on memory are often attributed to a working memory impairment resulting from compromised serotonin systems. However, recent evidence from non-human animal experimental studies suggests that acute MDMA may impair memory performance through an MDMA-induced increase in dopamine (DA) release, leading to overstimulation of DA D1 receptors. The overstimulation of D1 receptors during acute MDMA exposure is thought to indirectly impair memory by increasing a subject’s susceptibility to proactive interference, leading to a perseverative pattern of responding during memory tasks.  Objective: This project investigates the hypothesis that acute MDMA impairs memory performance via overstimulation of D1 receptors. The acute actions of MDMA will be assessed using DA D1 mutant (DAD1-/-) rats which possess a selective down-regulation in functional DA D1 receptors. On the basis that acute MDMA impairs memory function via overstimulation of D1 receptors it is predicted that, compared to control rats, DAD1-/- rats will be protected from the acute memory deficits caused by MDMA. Due to the novelty of the DAD1-/- rat model, prior to the assessment of the acute effects of MDMA on memory performance in these rats, behavioural and neurochemical characterisations will be conducted.  Methods: Firstly, a behavioural characterisation was conducted to explore the tendencies of DAD1-/- rats, compared to controls, in a drug free state. Behaviours relevant for motivation and reward, movement, and memory were the focus of the behavioural investigation due to evidence suggesting a role for D1-like receptors in these functions. Secondly, a neurochemical assessment of DAD1-/- and controls rats in response to MDMA (3 mg/kg) was assayed using c-fos expression, a marker for neuronal activity, in several brain regions with known DA innervation. Thirdly, to assess the acute effects of MDMA on memory performance, DAD1-/- and control rats were trained on a spatial working memory T-maze task, delayed non-matching to position (DNMTP), over 25 sessions. Once trained, rats were administered either MDMA (1.5, 2.25 and 3 mg/kg) or saline fifteen minutes prior to testing on DNMTP, with all subjects experiencing all drug doses three time each. In addition, to further investigate the hypothesis that overstimulation of D1 receptors impairs memory performance, the effects of a D1 receptor agonist, SKF 81297 (0.5, 1, 1.5, 3, 4.5 mg/kg) on DNMTP performance were also assessed.  Results: The behavioural characterisation revealed that DAD1-/- rats are capable of performing many behaviours relevant for reward processing, movement and memory function. However, DAD1-/- rats were impaired with regard to some reward-related behaviours, such as the acquitision of lever pressing for sugar pellets. The assessment of c-fos expression demonstrated that DAD1-/- rats express less c-fos in the medial prefrontal cortex, striatum and nucleus accumbens compared to control rats following MDMA administration. Lastly, the effects of acute MDMA administration on memory performance were tested. During the third block of MDMA administration, control rats demonstrated decreased accuracy on the DMNTP task at both the 2.25 and 3 mg/kg doses. The decrease in accuracy during MDMA exposure in control rats was driven by an increase in perseverative errors. On the contrary, DAD1-/- rats were not impaired on the DNMTP task following acute MDMA at any of the doses tested. Administration of SKF 81297 did not lead to any systematic changes in performance, but at the 3 mg/kg dose DAD1-/- rats displayed increased accuracy compared to control rats.  Conclusions: DAD1-/- rats were protected from an MDMA-induced decrease in accuracy on the DNMTP task compared to control rats. This finding challenges the assumption that MDMA’s acute effects on memory performance are wholly due to serononergic mechanisms. Specifically, the current study provides evidence for the hypothesis that acute MDMA exposure impairs memory performance in rats.</p>


2021 ◽  
Author(s):  
◽  
Hanna Squire

<p>Rationale: (±) 3,4-methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a recreationally abused psychostimulant that leads to detrimental effects on memory performance. MDMA’s acute effects on memory are often attributed to a working memory impairment resulting from compromised serotonin systems. However, recent evidence from non-human animal experimental studies suggests that acute MDMA may impair memory performance through an MDMA-induced increase in dopamine (DA) release, leading to overstimulation of DA D1 receptors. The overstimulation of D1 receptors during acute MDMA exposure is thought to indirectly impair memory by increasing a subject’s susceptibility to proactive interference, leading to a perseverative pattern of responding during memory tasks.  Objective: This project investigates the hypothesis that acute MDMA impairs memory performance via overstimulation of D1 receptors. The acute actions of MDMA will be assessed using DA D1 mutant (DAD1-/-) rats which possess a selective down-regulation in functional DA D1 receptors. On the basis that acute MDMA impairs memory function via overstimulation of D1 receptors it is predicted that, compared to control rats, DAD1-/- rats will be protected from the acute memory deficits caused by MDMA. Due to the novelty of the DAD1-/- rat model, prior to the assessment of the acute effects of MDMA on memory performance in these rats, behavioural and neurochemical characterisations will be conducted.  Methods: Firstly, a behavioural characterisation was conducted to explore the tendencies of DAD1-/- rats, compared to controls, in a drug free state. Behaviours relevant for motivation and reward, movement, and memory were the focus of the behavioural investigation due to evidence suggesting a role for D1-like receptors in these functions. Secondly, a neurochemical assessment of DAD1-/- and controls rats in response to MDMA (3 mg/kg) was assayed using c-fos expression, a marker for neuronal activity, in several brain regions with known DA innervation. Thirdly, to assess the acute effects of MDMA on memory performance, DAD1-/- and control rats were trained on a spatial working memory T-maze task, delayed non-matching to position (DNMTP), over 25 sessions. Once trained, rats were administered either MDMA (1.5, 2.25 and 3 mg/kg) or saline fifteen minutes prior to testing on DNMTP, with all subjects experiencing all drug doses three time each. In addition, to further investigate the hypothesis that overstimulation of D1 receptors impairs memory performance, the effects of a D1 receptor agonist, SKF 81297 (0.5, 1, 1.5, 3, 4.5 mg/kg) on DNMTP performance were also assessed.  Results: The behavioural characterisation revealed that DAD1-/- rats are capable of performing many behaviours relevant for reward processing, movement and memory function. However, DAD1-/- rats were impaired with regard to some reward-related behaviours, such as the acquitision of lever pressing for sugar pellets. The assessment of c-fos expression demonstrated that DAD1-/- rats express less c-fos in the medial prefrontal cortex, striatum and nucleus accumbens compared to control rats following MDMA administration. Lastly, the effects of acute MDMA administration on memory performance were tested. During the third block of MDMA administration, control rats demonstrated decreased accuracy on the DMNTP task at both the 2.25 and 3 mg/kg doses. The decrease in accuracy during MDMA exposure in control rats was driven by an increase in perseverative errors. On the contrary, DAD1-/- rats were not impaired on the DNMTP task following acute MDMA at any of the doses tested. Administration of SKF 81297 did not lead to any systematic changes in performance, but at the 3 mg/kg dose DAD1-/- rats displayed increased accuracy compared to control rats.  Conclusions: DAD1-/- rats were protected from an MDMA-induced decrease in accuracy on the DNMTP task compared to control rats. This finding challenges the assumption that MDMA’s acute effects on memory performance are wholly due to serononergic mechanisms. Specifically, the current study provides evidence for the hypothesis that acute MDMA exposure impairs memory performance in rats.</p>


2020 ◽  
Author(s):  
Sobanawartiny Wijeakumar ◽  
Eva Rafetseder ◽  
Yee Lee Shing ◽  
Courtney McKay

Visual working memory (VWM) is reliably predictive of fluid intelligence and academic achievements. The objective of the current study was to investigate the nature of individual differences in pre-schoolers by examining the relationship between behaviour-brain function underlying VWM processing and parent-reported measures. We used a portable 8 x 8 channel functional near-infrared spectroscopy system to record from the frontal and parietal cortices of 4.5-year-old pre-school children (N=74) as they completed a colour change detection VWM task in their homes. Parents were asked to fill in questionnaires on temperament, academic aspirations, home environment, and life stress. Children were median-split into a low-performing (LP) and a high-performing (HP) group based on the number of items they could successfully remember during the task. LPs increasingly activated the bilateral frontal and parietal cortices with increasing load, whereas HPs showed no difference in activation across the loads. Our findings suggested that LPs recruited more neural resources when their VWM capacity was challenged. We employed mediation analyses to examine the association between the difference in activation between the highest and lowest loads, and variables from the questionnaires. The difference in activation in the right parietal cortex partially mediated the association between parent-reported stressful life events and VWM performance. Specifically, a higher number of stressful events was associated with lower VWM performance. Critically, our findings show that the association between VWM capacity, right parietal activation, and indicators of life stress is important to understand the nature of individual differences in VWM in pre-school children.


Author(s):  
Ryan McKendrick ◽  
Ranjana Mehta ◽  
Hasan Ayaz ◽  
Melissa Scheldrup ◽  
Raja Parasuraman

Objective: The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Background: Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Method: Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Results: Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Conclusion: Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. Application: This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.


2018 ◽  
Vol 30 (9) ◽  
pp. 1229-1240 ◽  
Author(s):  
Kirsten C. S. Adam ◽  
Matthew K. Robison ◽  
Edward K. Vogel

Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.


Sign in / Sign up

Export Citation Format

Share Document