Predicting multilingual effects on executive function and individual connectomes in children: An ABCD study

2021 ◽  
Vol 118 (49) ◽  
pp. e2110811118
Author(s):  
Young Hye Kwon ◽  
Kwangsun Yoo ◽  
Hillary Nguyen ◽  
Yong Jeong ◽  
Marvin M. Chun

While there is a substantial amount of work studying multilingualism’s effect on cognitive functions, little is known about how the multilingual experience modulates the brain as a whole. In this study, we analyzed data of over 1,000 children from the Adolescent Brain Cognitive Development (ABCD) Study to examine whether monolinguals and multilinguals differ in executive function, functional brain connectivity, and brain–behavior associations. We observed significantly better performance from multilingual children than monolinguals in working-memory tasks. In one finding, we were able to classify multilinguals from monolinguals using only their whole-brain functional connectome at rest and during an emotional n-back task. Compared to monolinguals, the multilingual group had different functional connectivity mainly in the occipital lobe and subcortical areas during the emotional n-back task and in the occipital lobe and prefrontal cortex at rest. In contrast, we did not find any differences in behavioral performance and functional connectivity when performing a stop-signal task. As a second finding, we investigated the degree to which behavior is reflected in the brain by implementing a connectome-based behavior prediction approach. The multilingual group showed a significant correlation between observed and connectome-predicted individual working-memory performance scores, while the monolingual group did not show any correlations. Overall, our observations suggest that multilingualism enhances executive function and reliably modulates the corresponding brain functional connectome, distinguishing multilinguals from monolinguals even at the developmental stage.

2019 ◽  
Author(s):  
Monica D. Rosenberg ◽  
Steven A. Martinez ◽  
Kristina M. Rapuano ◽  
May I. Conley ◽  
Alexandra O. Cohen ◽  
...  

AbstractWorking memory function changes across development and varies across individuals. The patterns of behavior and brain function that track individual differences in working memory during development, however, are not well understood. Here we establish associations between working memory, cognitive abilities, and functional MRI activation in data from over 4,000 9–10-year-olds enrolled in the Adolescent Brain Cognitive Development study, an ongoing longitudinal study in the United States. Behavioral analyses reveal robust relationships between working memory, short-term memory, language skills, and fluid intelligence. Analyses relating out-of-scanner working memory performance to memory-related fMRI activation in an emotional n-back task demonstrate that frontoparietal activity in response to an explicit memory challenge indexes working memory ability. Furthermore, this relationship is domain-specific, such that fMRI activation related to emotion processing during the emotional n-back task, inhibitory control during a stop-signal task, and reward processing during a monetary incentive delay task does not track memory abilities. Together these results inform our understanding of the emergence of individual differences in working memory and lay the groundwork for characterizing the ways in which they change across adolescence.


2021 ◽  
Author(s):  
Geisa B. Gallardo‐Moreno ◽  
Francisco J. Alvarado‐Rodríguez ◽  
Rebeca Romo‐Vázquez ◽  
Hugo Vélez‐Pérez ◽  
Andrés A. González‐Garrido

2019 ◽  
pp. 1-4
Author(s):  
Yushau Yusuf ◽  
Muhammad U.A ◽  
Isah F.A

Working memory is a system that is responsible for transient holding and processing of new and already stored information. It also involves processing for reasoning, comprehension, learning and memory updating. Headphones are a pair of small loudspeakers that are designed to be held in place close to a user’s ear. They are electroacoustic transducers which convert electrical signals to a corresponding sound in the user’s ear. Several studies have recently shown a link between cognitive abilities and response to hearing aid and signal processing in the brain. Therefore, the relationship between headphone usage among healthy subjects become pertinent. This study is aimed at evaluating the effect of headphone on working memory using N-back task. One hundred (100) participants (55 headphone users and 45 non-headphone user’s) within the age range of 18-31 years were assessed. Participants were instructed to keep in memory, a series of letters and say “target” whenever there was a repetition of letter with exactly one intervening letter and to remain silent when any other letter appeared. The results of this study showed that there was no statistically significant difference in working memory between headphone and non-headphone users with p>0.05. In conclusion, this study revealed headphone use has no effect on working memory of the participants subjected to N–back test.


Author(s):  
Ryan McKendrick ◽  
Ranjana Mehta ◽  
Hasan Ayaz ◽  
Melissa Scheldrup ◽  
Raja Parasuraman

Objective: The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Background: Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Method: Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Results: Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Conclusion: Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. Application: This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.


2019 ◽  
pp. 108705471987948 ◽  
Author(s):  
Steven Woltering ◽  
Chao Gu ◽  
Zhong-Xu Liu ◽  
Rosemary Tannock

Objective: ADHD has been associated with persistent problems of working memory. This study investigated the efficacy of an intensive and adaptive computerized working memory treatment (CWMT) at behavioral and neural levels. Method: College students ( n = 89; 40 females) with ADHD were randomized into a standard-length CWMT (45 min/session, 25 sessions, n = 29), shortened-length CWMT (15 min/session, 25 sessions, n = 32), and a waitlist group ( n = 28). Both CWMT groups received treatment for 5 days a week for 5 weeks. Lab sessions before and after CWMT assessed electroencephalography (EEG) indicators of working memory, behavioral indicators of working memory performance, and ADHD symptomatology. Results: No evidence was found for neural or any other behavioral transfer effects of improvement for the CWMT treatment groups over the active control or waitlist group. Conclusion: Our study does not provide evidence for the benefits of CWMT at neural or behavioral levels.


2013 ◽  
Vol 20 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Jane E. Schreiber ◽  
Katherine L. Possin ◽  
Jonathan M. Girard ◽  
Celiane Rey-Casserly

AbstractTheories of attention deficit/hyperactivity disorder (ADHD) increasingly highlight the role of neuropsychological impairment in ADHD; however, a consistent and identifiable pattern of performance on tests is not well established. The National Institutes of Health (NIH) Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER) battery provides measures of common variance across multiple executive function tests within specific domains and was used to characterize which executive functions are most affected in children with ADHD. Thirty-two children (24 male), ages 8–15 years (M = 12.02; SD = 2.29), diagnosed with ADHD and no comorbid disorder completed the NIH EXAMINER battery. Sixty age and gender matched healthy controls were chosen from a database of participants enrolled in the NIH EXAMINER multi-site study. Children with ADHD performed worse on the working memory score compared with the controls. No differences were found on the cognitive control or fluency scores. For children with ADHD, poorer working memory performance predicted parent report of child learning problems. Cognitive control and fluency scores did not predict learning problems. In summary, working memory emerges as a primary impairment in children with ADHD who have no comorbid disorders. Furthermore, working memory weaknesses may underlie the academic problems often seen in children with ADHD. (JINS, 2013, 19, 1–11)


2014 ◽  
Vol 35 (1) ◽  
pp. 62-74 ◽  
Author(s):  
Brigitte Vugs ◽  
Marc Hendriks ◽  
Juliane Cuperus ◽  
Ludo Verhoeven

2011 ◽  
Vol 2 ◽  
Author(s):  
Nele Wild-Wall ◽  
Michael Falkenstein ◽  
Patrick D. Gajewski

2021 ◽  
Author(s):  
Paul Gomez

In this research we explore in detail how a phenomenon called sustained persistent activity is achieved by circuits of interconnected neurons. Persistent activity is a phenomenon that has been extensively studied (Papoutsi et al. 2013; Kaminski et. al. 2017; McCormick et al. 2003; Rahman, and Berger, 2011). Persistent activity consists in neuron circuits whose spiking activity remains even after the initial stimuli are removed. Persistent activity has been found in the prefrontal cortex (PFC) and has been correlated to working memory and decision making (Clayton E. Curtis and Daeyeol Lee, 2010). We go beyond the explanation of how persistent activity happens and show how arrangements of those basic circuits encode and store data and are used to perform more elaborated tasks and computations. The purpose of the model we propose here is to describe the minimum number of neurons and their interconnections required to explain persistent activity and how this phenomenon is actually a fast storage mechanism required for implementing working memory, task processing and decision making.


Sign in / Sign up

Export Citation Format

Share Document