scholarly journals A Novel Antenna Protein Complex in the Life Cycle of Cyanobacterial Photosystem II

2019 ◽  
Author(s):  
Daniel A. Weisz ◽  
Virginia M. Johnson ◽  
Dariusz M. Niedzwiedzki ◽  
Min Kyung Shinn ◽  
Haijun Liu ◽  
...  

ABSTRACTIn oxygenic photosynthetic organisms, photosystem II (PSII) is a unique membrane protein complex that catalyzes light-driven oxidation of water. PSII undergoes frequent damage due to its demanding photochemistry. However, many facets of its repair and reassembly following photodamage remain unknown. We have discovered a novel PSII subcomplex that lacks five key PSII core reaction center polypeptides: D1, D2, PsbE, PsbF, and PsbI. This pigment-protein complex does contain the PSII core antenna proteins CP47 and CP43, as well as most of their associated low–molecular–mass subunits, and the assembly factor Psb27. Immunoblotting analysis, multiple mass spectrometry techniques, and ultrafast spectroscopic results supported the absence of a functional reaction center in this chlorophyll–protein complex. We therefore refer to it as the ‘no reaction center’ complex (NRC). Additionally, genetic deletion of PsbO on the PSII lumenal side resulted in an increased NRC population, indicative of a faulty PSII repair scheme at the cellular level. Analytical ultracentrifugation studies and clear native acrylamide gel analysis showed that the NRC complex is a stable pigment-protein complex and not a mixture of free CP47 and CP43 proteins. Our finding challenges the current model of the PSII repair cycle and implies an alternative PSII repair strategy. We propose that formation of this pigment-protein complex maximizes PSII repair economy by preserving an intact PSII core antenna shell in a single complex that is available for PSII reassembly, thus minimizing the risk of randomly diluting multiple recycling components in the thylakoid membrane following a photodamage event at the RC.Significance statementPhotosystem II (PSII) converts sunlight into chemical energy, powering nearly all life on Earth. The efficiency of this process is maximized under various environmental conditions by a frequent repair and reassembly cycle that follows inevitable PSII damage even during normal oxygenic photosynthesis. We have isolated a novel pigment protein PSII subcomplex in which, surprisingly, the reaction center (RC) components of PSII are absent. Formation of this stable chlorophyll-protein complex suggests a protective mechanism whereby longer-lived PSII subunits are ‘unplugged’ from the damaged RC to prevent harmful, aberrant photochemistry during RC repair. This finding provides intriguing new insight into how PSII is assembled and rebuilt to optimize its performance to optimally catalyze one of the most challenging reactions in biology.

2019 ◽  
Vol 116 (43) ◽  
pp. 21907-21913 ◽  
Author(s):  
Daniel A. Weisz ◽  
Virginia M. Johnson ◽  
Dariusz M. Niedzwiedzki ◽  
Min Kyung Shinn ◽  
Haijun Liu ◽  
...  

In oxygenic photosynthetic organisms, photosystem II (PSII) is a unique membrane protein complex that catalyzes light-driven oxidation of water. PSII undergoes frequent damage due to its demanding photochemistry. It must undergo a repair and reassembly process following photodamage, many facets of which remain unknown. We have discovered a PSII subcomplex that lacks 5 key PSII core reaction center polypeptides: D1, D2, PsbE, PsbF, and PsbI. This pigment–protein complex does contain the PSII core antenna proteins CP47 and CP43, as well as most of their associated low molecular mass subunits, and the assembly factor Psb27. Immunoblotting, mass spectrometry, and ultrafast spectroscopic results support the absence of a functional reaction center in this complex, which we call the “no reaction center” complex (NRC). Analytical ultracentrifugation and clear native PAGE analysis show that NRC is a stable pigment–protein complex and not a mixture of free CP47 and CP43 proteins. NRC appears in higher abundance in cells exposed to high light and impaired protein synthesis, and genetic deletion of PsbO on the PSII luminal side results in an increased NRC population, indicative that NRC forms in response to photodamage as part of the PSII repair process. Our finding challenges the current model of the PSII repair cycle and implies an alternative PSII repair strategy. Formation of this complex may maximize PSII repair economy by preserving intact PSII core antennas in a single complex available for PSII reassembly, minimizing the risk of randomly diluting multiple recycling components in the thylakoid membrane following a photodamage event.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 99-105 ◽  
Author(s):  
I. Agalidis ◽  
E. Rivas ◽  
F. Reiss-Husson

Abstract Purified reaction center-B875 pigment-protein complex isolated from Rc. gelatinosus (I. Agalidis, E. Rivas, and F. Reiss-Husson, Photosynth. Res. 23, 249 - 255 (1990)) was further characterized. In the chromatophores, the quinone content was shown to be 6 menaquinones 8 and 16 ubiquinones 8 per reaction center, indicating that the pool contained both quinone types. Besides the primary (MK8) and secondary (UQ8 ) electron acceptors of the reaction cen­ter, the complex contains residual quinones from the membrane pool (about 3 MK8 and 5 UQ8) probably associated with the phospholipids. Apparent particle weight of the complex including bound detergent was 520 ± 46 kDa. The secondary quinone QB was partially removed from the RC by treatment with 2 -3 % octaethyleneglycol dodecyl ether and 3 -4 mᴍ orthophenanthroline. Reconstitution experi­ments showed that UQ6, UQ9 and UQ10 could replace QB but that MK8 and MK9 could not. It was concluded that QB site has a clear specificity towards ubiquinone binding.


2017 ◽  
Author(s):  
Tanai Cardona ◽  
Patricia Sánchez-Baracaldo ◽  
A. William Rutherford ◽  
Anthony W. D. Larkum

AbstractPhotosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of Eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale we hypothesize that this early Archean photosystem was capable of water oxidation and had already evolved some level of protection against the formation of reactive oxygen species, which would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 152 ◽  
Author(s):  
Prakitchai Chotewutmontri ◽  
Rosalind Williams-Carrier ◽  
Alice Barkan

Photosystem II (PSII) in chloroplasts and cyanobacteria contains approximately fifteen core proteins, which organize numerous pigments and prosthetic groups that mediate the light-driven water-splitting activity that drives oxygenic photosynthesis. The PSII reaction center protein D1 is subject to photodamage, whose repair requires degradation of damaged D1 and its replacement with nascent D1. Mechanisms that couple D1 synthesis with PSII assembly and repair are poorly understood. We address this question by using ribosome profiling to analyze the translation of chloroplast mRNAs in maize and Arabidopsis mutants with defects in PSII assembly. We found that OHP1, OHP2, and HCF244, which comprise a recently elucidated complex involved in PSII assembly and repair, are each required for the recruitment of ribosomes to psbA mRNA, which encodes D1. By contrast, HCF136, which acts upstream of the OHP1/OHP2/HCF244 complex during PSII assembly, does not have this effect. The fact that the OHP1/OHP2/HCF244 complex brings D1 into proximity with three proteins with dual roles in PSII assembly and psbA ribosome recruitment suggests that this complex is the hub of a translational autoregulatory mechanism that coordinates D1 synthesis with need for nascent D1 during PSII biogenesis and repair.


2013 ◽  
Vol 82 (1) ◽  
pp. 577-606 ◽  
Author(s):  
David J. Vinyard ◽  
Gennady M. Ananyev ◽  
G. Charles Dismukes

Sign in / Sign up

Export Citation Format

Share Document