scholarly journals Towards automated control of embryonic stem cell pluripotency

2019 ◽  
Author(s):  
Mahmoud Khazim ◽  
Lorena Postiglione ◽  
Elisa Pedone ◽  
Dan L. Rocca ◽  
Carine Zahra ◽  
...  

AbstractMouse embryonic stem cells (mESCs) have been shown to exist in three distinct pluripotent states (ground, naïve and primed pluripotent states), depending on culture conditions. External feedback control strategies have been, so far, mainly used to automatically regulate gene expression in bacteria and yeast. Here, we exploit a microfluidics/microscopy platform and segmentation and external feedback control algorithms for the automatic regulation of pluripotency phenotypes in mESCs. We show feasibility of automatically controlling, in living mESCs, levels of an endogenous pluripotency gene, Rex1, through a fluorescent reporter, used as control output, and drugs commonly used to modulate pluripotency (i.e. MEK kinase and Gsk3β inhibitors) as control inputs. Our results will ultimately aid in the derivation of superior protocols for pluripotency maintenance and differentiation of mouse and human stem cells.

Author(s):  
Masaki Kinoshita ◽  
Michael Barber ◽  
William Mansfield ◽  
Yingzhi Cui ◽  
Daniel Spindlow ◽  
...  

SUMMARYPluripotent cells emerge via a naïve founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) represent the initial naïve and final primed phases of pluripotency, respectively. Here we investigate the intermediate formative stage. Using minimal exposure to specification cues, we expand stem cells from formative mouse epiblast. Unlike ES cells or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonise chimaeras including the germline. Transcriptome analyses show retained pre-gastrulation epiblast identity. Gain of signal responsiveness and chromatin accessibility relative to ES cells reflect lineage capacitation. FS cells show distinct transcription factor dependencies from EpiSCs, relying critically on Otx2. Finally, FS cell culture conditions applied to human naïve cells or embryos support expansion of similar stem cells, consistent with a conserved attractor state on the trajectory of mammalian pluripotency.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


2020 ◽  
Author(s):  
Irene de Cesare ◽  
Criseida G. Zamora-Chimal ◽  
Lorena Postiglione ◽  
Mahmoud Khazim ◽  
Elisa Pedone ◽  
...  

ABSTRACTExtracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. While such image segmentation applications have been previously reported, there is in the literature a lack of open-source and documented code for the community. We describe ChipSeg, a computational tool to segment bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy. The method is based on thresholding and uses the same core functions for both cell types. It allows to segment individual cells in high cell-density microfluidic devices, to quantify fluorescence protein expression over a time-lapse experiment and to track individual cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customised for other experimental settings and research aims.


Author(s):  
Chika Ogura ◽  
Kazumi Hirano ◽  
Shuji Mizumoto ◽  
Shuhei Yamada ◽  
Shoko Nishihara

Abstract Dermatan sulphate (DS), a glycosaminoglycan, is present in the extracellular matrix and on the cell surface. Previously, we showed that heparan sulphate plays a key role in the maintenance of the undifferentiated state in mouse embryonic stem cells (mESCs) and in the regulation of their differentiation. Chondroitin sulphate has also been to be important for pluripotency and differentiation of mESCs. Keratan sulphate is a marker of human pluripotent stem cells. To date, however, the function of DS in mESCs has not been clarified. Dermatan 4 sulfotransferase 1, which transfers sulphate to the C-4 hydroxyl group of N-acetylgalactosamine of DS, contributes to neuronal differentiation of mouse neural progenitor cells. Therefore, we anticipated that neuronal differentiation would be induced in mESCs in culture by the addition of DS. To test this expectation, we investigated neuronal differentiation in mESCs and human neural stem cells (hNSCs) cultures containing DS. In mESCs, DS promoted neuronal differentiation by activation of extracellular signal-regulated kinase 1/2 and also accelerated neurite outgrowth. In hNSCs, DS promoted neuronal differentiation and neuronal migration, but not neurite outgrowth. Thus, DS promotes neuronal differentiation in both mouse and human stem cells, suggesting that it offers a novel method for efficiently inducing neuronal differentiation.


2016 ◽  
Vol 15 ◽  
pp. CIN.S39839 ◽  
Author(s):  
Akimasa Seno ◽  
Tomonari Kasai ◽  
Masashi Ikeda ◽  
Arun Vaidyanath ◽  
Junko Masuda ◽  
...  

We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors ( OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes ( POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.


2005 ◽  
Vol 17 (2) ◽  
pp. 125 ◽  
Author(s):  
Wilfried A. Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.


Sign in / Sign up

Export Citation Format

Share Document