lineage priming
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Peter Fabian ◽  
Kuo-Chang Tseng ◽  
Mathi Thiruppathy ◽  
Claire Arata ◽  
Hung-Jhen Chen ◽  
...  

AbstractThe cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.


2021 ◽  
Author(s):  
Yoon-A Kang ◽  
Hyojung Paik ◽  
Si Yi Zhang ◽  
Jonathan Chen ◽  
Matthew R Warr ◽  
...  

Recent lineage tracing analyses revealed multipotent progenitors (MPP) to be major functional contributors to steady-state hematopoiesis (1-6). However, we are still lacking a precise resolution of myeloid differentiation trajectories and cellular heterogeneity in MPPs. Here, we found that myeloid-biased MPP3 (2, 3) are functionally and molecularly heterogeneous, with a distinct subset of myeloid-primed secretory cells with high endoplasmic reticulum (ER) volume and FcγR expression. We show that FcγR+/ERhigh MPP3 are a transitional population for rapid production of granulocyte/macrophage progenitors (GMP), which directly amplify myelopoiesis through inflammation-triggered secretion of cytokines in the local bone marrow (BM) microenvironment. Our results identify a novel regulatory function for a subset of secretory MPP3 that controls myeloid differentiation through lineage-priming and cytokine production, and act as a self-reinforcing amplification compartment in stress and disease conditions.


2021 ◽  
Vol 118 (14) ◽  
pp. e2015748118
Author(s):  
Jun Xia ◽  
Zhixin Kang ◽  
Yuanyuan Xue ◽  
Yanyan Ding ◽  
Suwei Gao ◽  
...  

During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Avantika Lal ◽  
Zachary D. Chiang ◽  
Nikolai Yakovenko ◽  
Fabiana M. Duarte ◽  
Johnny Israeli ◽  
...  

AbstractATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit to denoise sequencing coverage and identify regulatory peaks at base-pair resolution from low cell count, low-coverage, or low-quality ATAC-seq data. Models trained by AtacWorks can detect peaks from cell types not seen in the training data, and are generalizable across diverse sample preparations and experimental platforms. We demonstrate that AtacWorks enhances the sensitivity of single-cell experiments by producing results on par with those of conventional methods using ~10 times as many cells, and further show that this framework can be adapted to enable cross-modality inference of protein-DNA interactions. Finally, we establish that AtacWorks can enable new biological discoveries by identifying active regulatory regions associated with lineage priming in rare subpopulations of hematopoietic stem cells.


2021 ◽  
Vol 23 (1) ◽  
pp. 23-31
Author(s):  
Anika Böttcher ◽  
Maren Büttner ◽  
Sophie Tritschler ◽  
Michael Sterr ◽  
Alexandra Aliluev ◽  
...  

Author(s):  
Masaki Kinoshita ◽  
Michael Barber ◽  
William Mansfield ◽  
Yingzhi Cui ◽  
Daniel Spindlow ◽  
...  

SUMMARYPluripotent cells emerge via a naïve founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) represent the initial naïve and final primed phases of pluripotency, respectively. Here we investigate the intermediate formative stage. Using minimal exposure to specification cues, we expand stem cells from formative mouse epiblast. Unlike ES cells or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonise chimaeras including the germline. Transcriptome analyses show retained pre-gastrulation epiblast identity. Gain of signal responsiveness and chromatin accessibility relative to ES cells reflect lineage capacitation. FS cells show distinct transcription factor dependencies from EpiSCs, relying critically on Otx2. Finally, FS cell culture conditions applied to human naïve cells or embryos support expansion of similar stem cells, consistent with a conserved attractor state on the trajectory of mammalian pluripotency.


2020 ◽  
Author(s):  
Anika Böttcher ◽  
Maren Büttner ◽  
Sophie Tritschler ◽  
Michael Sterr ◽  
Alexandra Aliluev ◽  
...  

SUMMARYA detailed understanding of intestinal stem cell (ISC) self-renewal and differentiation is required to better treat chronic intestinal diseases. However, different models of ISC lineage hierarchy1–6 and segregation7–12 are debated. Here we report the identification of Lgr5+ ISCs that express Flattop (Fltp), a Wnt/planar cell polarity (PCP) reporter and effector gene. Lineage labelling revealed that Wnt/PCP-activated Fltp+ ISCs are primed either towards the enteroendocrine or the Paneth cell lineage in vivo. Integration of time-resolved lineage labelling with genome-wide and targeted single-cell gene expression analysis allowed us to delineate the ISC differentiation path into enteroendocrine and Paneth cells at the molecular level. Strikingly, we found that both lineages are directly recruited from ISCs via unipotent transition states, challenging the existence of formerly predicted bi- or multipotent secretory progenitors7–12. Transitory cells that mature into Paneth cells are quiescent and express both stem cell and secretory lineage genes, indicating that these cells are the previously described Lgr5+ labelretaining cells7. Wnt/PCP-activated Lgr5+ ISCs are indistinguishable from Wnt/β-catenin-activated Lgr5+ ISCs based on the expression of stem-cell signature or secretory lineagespecifying genes but possess less self-renewal activity. This suggests that lineage priming and cell-cycle exit is triggered at the post-transcriptional level by polarity cues and a switch from canonical to non-canonical Wnt/PCP signalling. Taken together, we identified the Wnt/PCP pathway as a new niche signal and polarity cue regulating stem cell fate. Active Wnt/PCP signalling represents one of the earliest events in ISC lineage priming towards the Paneth and enteroendocrine cell fate, preceding lateral inhibition and expression of secretory lineagespecifying genes. Thus, our findings provide a better understanding of the niche signals and redefine the mechanisms underlying ISC lineage hierarchy and segregation.


2020 ◽  
Author(s):  
Chet H Loh ◽  
Matteo Perino ◽  
Magnus R Bark ◽  
Gert Jan C Veenstra

AbstractPolycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. There are two distinct PRC2 complexes, PRC2.1 and PRC2.2, which contain respectively MTF2 and JARID2 in ES cells. Very little is known about the roles of these auxiliary PRC2 subunits during the exit of pluripotency. In this study, we explored their roles in lineage specification and commitment, using single-cell transcriptomics and mouse embryoid bodies derived from Mtf2 and Jarid2 null embryonic stem cells (ESCs). We observed that the loss of Mtf2 resulted in enhanced and faster differentiation towards cell fates from all germ layers, while the Jarid2 null cells were predominantly directed towards early differentiating precursors and neuro-ectodermal fates. Interestingly, we found that these effects are caused by derepression of developmental regulators that were poised for activation in pluripotent cells and gained H3K4me3 at their promoters in the absence of PRC2 repression. Upon lineage commitment, the differentiation trajectories were relatively similar to those of wild type cells. Together, our results uncovered a major role for MTF2-containing PRC2.1 in balancing poised lineage-specific gene activation, providing a threshold for lineage choice during the exit of pluripotency.HighlightsEnhanced and faster differentiation into all three germ layers in Mtf2 null embryoid bodiesJarid2 null cells enriched for early differentiating precursors and neuro-ectodermal cell fatesMTF2 is critical for the balance of activation and repression of key developmental regulatorsPRC2 coordinates lineage choice and execution of the lineage-specific program by thresholding of lineage-priming


Author(s):  
Sai Ma ◽  
Bing Zhang ◽  
Lindsay LaFave ◽  
Zachary Chiang ◽  
Yan Hu ◽  
...  

SummaryCell differentiation and function are regulated across multiple layers of gene regulation, including the modulation of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous process precluding a temporal understanding of the regulatory events leading to cell fate commitment. Here, we developed SHARE-seq, a highly scalable approach for measurement of chromatin accessibility and gene expression within the same single cell. Using 34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-regulatory interactions and define Domains of Regulatory Chromatin (DORCs), which significantly overlap with super-enhancers. We show that during lineage commitment, chromatin accessibility at DORCs precedes gene expression, suggesting changes in chromatin accessibility may prime cells for lineage commitment. We therefore develop a computational strategy (chromatin potential) to quantify chromatin lineage-priming and predict cell fate outcomes. Together, SHARE-seq provides an extensible platform to study regulatory circuitry across diverse cells within tissues.


Sign in / Sign up

Export Citation Format

Share Document