scholarly journals SynToxProfiler: an approach for top drug combination selection based on integrated profiling of synergy, toxicity and efficacy

2019 ◽  
Author(s):  
Aleksandr Ianevski ◽  
Alexander Kononov ◽  
Sanna Timonen ◽  
Tero Aittokallio ◽  
Anil K Giri

AbstractDrug combinations are becoming a standard treatment of many complex diseases due to their capability to overcome resistance to monotherapy. Currently, in the preclinical drug combination screening, the top hits for further study are often selected based on synergy alone, without considering the combination efficacy and toxicity effects, even though these are critical determinants for the clinical success of a therapy. To promote the prioritization of drug combinations based on integrated analysis of synergy, efficacy and toxicity profiles, we implemented a web-based open-source tool, SynToxProfiler (Synergy-Toxicity-Profiler). When applied to 20 anti-cancer drug combinations tested both in healthy control and T-cell prolymphocytic leukemia (T-PLL) patient cells, as well as to 77 anti-viral drug pairs tested on Huh7 liver cell line with and without Ebola virus infection, SynToxProfiler was shown to prioritize synergistic drug pairs with higher selective efficacy (difference between efficacy and toxicity level) as top hits, which offers improved likelihood for clinical success.

2021 ◽  
Author(s):  
Jiannan Yang ◽  
Zhongzhi Xu ◽  
William Wu ◽  
Qian Chu ◽  
Qingpeng Zhang

Abstract Compared with monotherapy, anti-cancer drug combination can provide effective therapy with less toxicity in cancer treatment. Recent studies found that the topological positions of protein modules related to the drugs and the cancer cell lines in the protein-protein interaction (PPI) network may reveal the effects of drugs. However, due to the size of the combinatorial space, identifying synergistic combinations of drugs from PPI network is computationally difficult. To address this challenge, we propose an end-to-end deep learning framework, namely Graph Convolutional Network for Drug Synergy (GraphSynergy), to make synergistic drug combination predictions. GraphSynergy adapts a spatial-based Graph Convolutional Network component to encode the high-order structure information of protein modules targeted by a pair of drugs, as well as the protein modules associated with a specific cancer cell line in the PPI network. The pharmacological effects of drug combinations are explicitly evaluated by their therapy and toxic scores. By introducing an attention component to automatically allocate contribution weights to the proteins, we show the ability of GraphSynergy to capture the pivotal proteins that play a part in both PPI network and biomolecular interactions between drug combinations and cancer cell lines. Experiments on two latest drug combination datasets demonstrate that GraphSynergy outperforms the state-of-the-art in predicting synergistic drug combinations. This study sheds light on using machine learning to discover effective combination therapies for cancer and other complex diseases.


2020 ◽  
Author(s):  
Fangyoumin Feng ◽  
Zhengtao Zhang ◽  
Guohui Ding ◽  
Lijian Hui ◽  
Yixue Li ◽  
...  

AbstractAnti-cancer drug combination is an effective solution to improve treatment efficacy and overcome resistance. Here we propose a network-based method (DComboNet) to prioritize the candidate drug combinations. The level one model is to predict generalized anti-cancer drug combination effectiveness and level two model is to predict personalized drug combinations. By integrating drugs, genes, pathways and their associations, DComboNet achieves better performance than previous methods, with high AUC value of around 0.8. The level two model performs better than level one model by introducing cancer sample specific transcriptome data into network construction. DComboNet is further applied on finding combinable drugs for sorafenib in hepatocellular cancer, and the results are verified with literatures and cell line experiments. More importantly, three potential mechanism modes of combinations were inferred based on network analysis. In summary, DComboNet is valuable for prioritizing drug combination and the network model may facilitate the understanding of the combination mechanisms.


2018 ◽  
Vol 16 (05) ◽  
pp. 1850017 ◽  
Author(s):  
Aman Sharma ◽  
Rinkle Rani

Combination drug therapy is considered a better treatment option for various diseases, such as cancer, HIV, hypertension, and infections as compared to targeted drug therapies. Combination or synergism helps to overcome drug resistance, reduction in drug toxicity and dosage. Considering the complexity and heterogeneity among cancer types, drug combination provides promising treatment strategy. Increase in drug combination data raises a challenge for developing a computational approach that can effectively predict drugs synergism. There is a need to model the combination drug screening data to predict new synergistic drug combinations for successful cancer treatment. In such a scenario, machine learning approaches can be used to alleviate the process of drugs synergy prediction. Experimental data from a single-agent or multi-agent drug screens provides feature data for model training. On the contrary, identification of effective drug combination using clinical trials is a time consuming and resource intensive task. This paper attempts to address the aforementioned challenges by developing a computational approach to effectively predict drug synergy. Single-drug efficacy is used for predicting drug synergism. Our approach obviates the need to understand the underlying drug mechanism to predict drug combination synergy. For this purpose, nine machine learning algorithms are trained. It is observed that the Random forest models, in comparison to other models, have shown significant performance. The [Formula: see text]-fold cross-validation is performed to evaluate the robustness of the best predictive model. The proposed approach is applied to mutant-BRAF melanoma and further validated using melanoma cell-lines from AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge dataset.


2015 ◽  
Vol 11 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Yiran Wu ◽  
Xiaolong Zhuo ◽  
Ziwei Dai ◽  
Xiao Guo ◽  
Yao Wang ◽  
...  

A mammalian cell mitotic network model was built and two effective anti-cancer drug combinations, Aurora B/PLK1 and microtubule formation/PLK1, were identified.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Remzi Celebi ◽  
Oliver Bear Don’t Walk ◽  
Rajiv Movva ◽  
Semih Alpsoy ◽  
Michel Dumontier

Chemotherapy ◽  
2014 ◽  
Vol 60 (5-6) ◽  
pp. 346-352 ◽  
Author(s):  
Jürgen Weinreich ◽  
Rami Archid ◽  
Khaled Bajaeifer ◽  
Anita Hack ◽  
Alfred Königsrainer ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Ling ◽  
R. Stephanie Huang

AbstractEvidence has recently emerged that many clinical cancer drug combinations may derive their efficacy from independent drug action (IDA), where patients only receive benefit from the single most effective drug in a drug combination. Here we present IDACombo, an IDA based method to predict the efficacy of drug combinations using monotherapy data from high-throughput cancer cell line screens. We show that IDACombo predictions closely agree with measured drug combination efficacies both in vitro (Pearson’s correlation = 0.93 when comparing predicted efficacies to measured efficacies for >5000 combinations) and in a systematically selected set of clinical trials (accuracy > 84% for predicting statistically significant improvements in patient outcomes for 26 first line therapy trials). Finally, we demonstrate how IDACombo can be used to systematically prioritize combinations for development in specific cancer settings, providing a framework for quickly translating existing monotherapy cell line data into clinically meaningful predictions of drug combination efficacy.


2018 ◽  
Author(s):  
Nanne Aben ◽  
Julian R. de Ruiter ◽  
Evert Bosdriesz ◽  
Yongsoo Kim ◽  
Gergana Bounova ◽  
...  

AbstractCombining anti-cancer drugs has the potential to increase treatment efficacy. Because patient responses to drug combinations are highly variable, predictive biomarkers of synergy are required to identify which patients are likely to benefit from a drug combination. To aid biomarker identification, the DREAM challenge consortium has recently released data from a screen containing 85 cell lines and 167 drug combinations. The main challenge of these data is the low sample size: per drug combination, a median of 14 cell lines have been screened. We found that widely used methods in single drug response prediction, such as Elastic Net regression per drug, are not predictive in this setting. Instead, we propose to use multi-task learning: training a single model simultaneously on all drug combinations, which we show results in increased predictive performance. In contrast to other multi-task learning approaches, our approach allows for the identification of biomarkers, by using a modified random forest variable importance score, which we illustrate using artificial data and the DREAM challenge data. Notably, we find that mutations in MYO15A are associated with synergy between ALK / IGFR dual inhibitors and PI3K pathway inhibitors in triple-negative breast cancer.Author summaryCombining drugs is a promising strategy for cancer treatment. However, it is often not known which patients will benefit from a particular drug combination. To identify patients that are likely to benefit, we need to identify biomarkers, such as mutations in the tumor’s DNA, that are associated with favorable response to the drug combination. In this work, we identified such biomarkers using the drug combination data released by the DREAM challenge consortium, which contain 85 tumor cell lines and 167 drug combinations. The main challenge of these data is the extremely low sample size: a median of 14 cell lines have been screened per drug combination. We found that traditional methods to identify biomarkers for monotherapy response, which analyze each drug separately, are not suitable in this low sample size setting. Instead, we used a technique called multi-task learning to jointly analyze all drug combinations in a single statistical model. In contrast to existing multi-task learning algorithms, which are black-box methods, our method allows for the identification of biomarkers. Notably, we find that, in a subset of breast cancer cell lines, MYO15A mutations associate with response to the combination of ALK / IGFR dual inhibitors and PI3K pathway inhibitors.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Kashif ◽  
C. Andersson ◽  
S. Hassan ◽  
H. Karlsson ◽  
W. Senkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document