scholarly journals Identifying biomarkers of anti-cancer drug synergy using multi-task learning

2018 ◽  
Author(s):  
Nanne Aben ◽  
Julian R. de Ruiter ◽  
Evert Bosdriesz ◽  
Yongsoo Kim ◽  
Gergana Bounova ◽  
...  

AbstractCombining anti-cancer drugs has the potential to increase treatment efficacy. Because patient responses to drug combinations are highly variable, predictive biomarkers of synergy are required to identify which patients are likely to benefit from a drug combination. To aid biomarker identification, the DREAM challenge consortium has recently released data from a screen containing 85 cell lines and 167 drug combinations. The main challenge of these data is the low sample size: per drug combination, a median of 14 cell lines have been screened. We found that widely used methods in single drug response prediction, such as Elastic Net regression per drug, are not predictive in this setting. Instead, we propose to use multi-task learning: training a single model simultaneously on all drug combinations, which we show results in increased predictive performance. In contrast to other multi-task learning approaches, our approach allows for the identification of biomarkers, by using a modified random forest variable importance score, which we illustrate using artificial data and the DREAM challenge data. Notably, we find that mutations in MYO15A are associated with synergy between ALK / IGFR dual inhibitors and PI3K pathway inhibitors in triple-negative breast cancer.Author summaryCombining drugs is a promising strategy for cancer treatment. However, it is often not known which patients will benefit from a particular drug combination. To identify patients that are likely to benefit, we need to identify biomarkers, such as mutations in the tumor’s DNA, that are associated with favorable response to the drug combination. In this work, we identified such biomarkers using the drug combination data released by the DREAM challenge consortium, which contain 85 tumor cell lines and 167 drug combinations. The main challenge of these data is the extremely low sample size: a median of 14 cell lines have been screened per drug combination. We found that traditional methods to identify biomarkers for monotherapy response, which analyze each drug separately, are not suitable in this low sample size setting. Instead, we used a technique called multi-task learning to jointly analyze all drug combinations in a single statistical model. In contrast to existing multi-task learning algorithms, which are black-box methods, our method allows for the identification of biomarkers. Notably, we find that, in a subset of breast cancer cell lines, MYO15A mutations associate with response to the combination of ALK / IGFR dual inhibitors and PI3K pathway inhibitors.

2021 ◽  
Author(s):  
Jiannan Yang ◽  
Zhongzhi Xu ◽  
William Wu ◽  
Qian Chu ◽  
Qingpeng Zhang

Abstract Compared with monotherapy, anti-cancer drug combination can provide effective therapy with less toxicity in cancer treatment. Recent studies found that the topological positions of protein modules related to the drugs and the cancer cell lines in the protein-protein interaction (PPI) network may reveal the effects of drugs. However, due to the size of the combinatorial space, identifying synergistic combinations of drugs from PPI network is computationally difficult. To address this challenge, we propose an end-to-end deep learning framework, namely Graph Convolutional Network for Drug Synergy (GraphSynergy), to make synergistic drug combination predictions. GraphSynergy adapts a spatial-based Graph Convolutional Network component to encode the high-order structure information of protein modules targeted by a pair of drugs, as well as the protein modules associated with a specific cancer cell line in the PPI network. The pharmacological effects of drug combinations are explicitly evaluated by their therapy and toxic scores. By introducing an attention component to automatically allocate contribution weights to the proteins, we show the ability of GraphSynergy to capture the pivotal proteins that play a part in both PPI network and biomolecular interactions between drug combinations and cancer cell lines. Experiments on two latest drug combination datasets demonstrate that GraphSynergy outperforms the state-of-the-art in predicting synergistic drug combinations. This study sheds light on using machine learning to discover effective combination therapies for cancer and other complex diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Oncotarget ◽  
2017 ◽  
Vol 8 (60) ◽  
pp. 101461-101474 ◽  
Author(s):  
Yung-Lung Chang ◽  
Yu-Juei Hsu ◽  
Ying Chen ◽  
Yi-Wen Wang ◽  
Shih-Ming Huang

2019 ◽  
Vol 18 ◽  
pp. 117693511985151 ◽  
Author(s):  
Shinuk Kim

In this study, we identified enrichment pathway connections from MCF7 breast cancer epithelial cells that were treated with 87 drugs. We extracted drug-treated samples, where the sample size was greater than or equal to 5. The drugs included 17-allylamino-geldanamycin, LY294002, trichostatin A, valproic acid, sirolimus, and wortmannin, which had sample sizes of 11, 8, 7, 7, 7, and 5, respectively. We found meaningful pathways using gene set enrichment analysis and identified intradrug and interdrug pathway interactions, which implied the influence of drug combination. Among the top 20 enrichment pathways that were wortmannin induced, there were a total of 37 intradrug pathway interactions via common genes. Thirty-seven pathway interactions were induced by valproic acid, 11 induced by trichostatin A, 20 induced by LY294002, and 59 induced by sirolimus, all via common genes. The number of interdrug-induced pathway interactions ranged from one pair of pathways to 23. The pair of ERBB_SIGNALING and INSULIN_SIGNALING pathways showed the highest score from a pair of 2 individual drugs. The highest number of pathway interactions was observed between the drugs 17-allylamino-geldanamycin and LY294002.


2013 ◽  
Vol 850-851 ◽  
pp. 1291-1294
Author(s):  
Xiu Rui Han ◽  
Xian Chao Li ◽  
Hong Zong Si ◽  
Cui Zhu Ge ◽  
Hua Gao ◽  
...  

Using the GEP,the QSAR model for anti-cancer activity of 38 compounds in 5 cancer cell lines was establish. These compounds are a novel class of anticarcinogen named tricyclic 5:7:5-fused diimidazo [4, 5-d:4, 5-f ][1, diazepines. The carcinoma cell lines involved in this research are A549 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, OVCAR-3 ovarian cancer and PC-3 prostate cancer. Accuracies of these models in training group and test group are over 90%, showing perfect predictive ability. This QSAR model will be great valuable in providing guidance for future designing and synthesizing of anticancer drugs.


2017 ◽  
Vol 24 (4) ◽  
pp. 181-195 ◽  
Author(s):  
Alyson Murray ◽  
Stephen F Madden ◽  
Naoise C Synnott ◽  
Rut Klinger ◽  
Darran O'Connor ◽  
...  

Considerable epidemiological evidence suggests that high levels of circulating vitamin D (VD) are associated with a decreased incidence and increased survival from cancer, i.e., VD may possess anti-cancer properties. The aim of this investigation was therefore to investigate the anti-cancer potential of a low calcaemic vitamin D analogue, i.e., inecalcitol and compare it with the active form of vitamin D, i.e., calcitriol, in a panel of breast cancer cell lines (n = 15). Using the MTT assay, IC50concentrations for response to calcitriol varied from 0.12 µM to >20 µM, whereas those for inecalcitol were significantly lower, ranging from 2.5 nM to 63 nM (P = 0.001). Sensitivity to calcitriol and inecalcitol was higher in VD receptor (VDR)-positive compared to VDR-negative cell lines (P = 0.0007 and 0.0080, respectively) and in ER-positive compared to ER-negative cell lines (P = 0.043 and 0.005, respectively). Using RNA-seq analysis, substantial but not complete overlap was found between genes differentially regulated by calcitriol and inecalcitol. In particular, significantly enriched gene ontology terms such as cell surface signalling and cell communication were found after treatment with inecalcitol but not with calcitriol. In contrast, ossification and bone morphogenesis were found significantly enriched after treatment with calcitriol but not with inecalcitol. Our preclinical results suggest that calcitriol and inecalcitol can inhibit breast cancer cell line growth, especially in cells expressing ER and VDR. As inecalcitol is significantly more potent than calcitriol and has low calcaemic potential, it should be further investigated for the treatment of breast cancer.


2017 ◽  
Vol 6 (2) ◽  
pp. 78-83
Author(s):  
N Ramya ◽  
◽  
Priyadharshini ◽  
R Prakash ◽  
R Dhivya ◽  
...  

Breast cancer is second most common in women and accounts for 23% of all occurring cancers in women. Patients with breast cancer have increasingly shown resistance and high toxicity to chemotherapeutic drugs. Plant-derived products have proved to be an important source of anti-cancer drugs. The present study was to investigate the anti cancer activity of ethanolic extract of Trachyspermum ammi against MCF-7 cell lines. The preliminary phytochemical studies of ethanolic extract of Trachyspermum ammi showed the presence of flavanoids, alkaloids, glycosides, steroids, carbohydrates, phenols, tannins and terpenes. The IC50 concentration of ethanolic extract of Trachyspermum ammi was determined by MTT assay. The results showed the greater degree of cytotoxicity at the dose of 25µg/ml of Trachyspermum ammi and it has been taken as IC50 value for our further study. Then, we also evaluated the apoptotic effect by measuring the morphological changes, cell viability rates using light and fluorescent microscopical studies and DNA fragmentation by using gel electrophoresis method. The ethanolic extract of Trachyspermum ammi showed significant signs of apoptosis such as cell shrinkage, membrane blebbing and nuclei DNA fragmentation. Further, we analyze the gene expression mRNA levels by using RT-PCR method, it showed the expression of p53 was significantly (P<0.001) increased when compared with normal MCF-7 cell line. The expression of anti apoptotic gene Bcl-2 was significantly (P<0.01) reduced when compared with MCF-7 cell line. From this study we conclude that ethanolic extract of Trachyspermum ammi having significant anticancer activity against MCF-7 cell lines and it might be good therapeutic value for further investigation to develop natural compounds as a anti tumor agents.


2021 ◽  
Author(s):  
Salini K ◽  
Niranjali Devaraj Sivasithamparam

Abstract Breast cancer treatment strategy depends mainly on the receptor status. Our aim was to identify a herbal preparation, effective against breast cancer, irrespective of hormone sensitivity, and to understand its molecular mechanism. The rich antioxidant composition of Hawthorn ( Crataegus oxyacantha ) makes it a promising anti-cancer drug candidate. Polyphenol-rich methanolic extract of C. oxyacantha berry (M.Co) was found to be cytotoxic on hormone receptor positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines, at a dose (75 mg/ml) safe on normal cells. It could effectively inhibit tumor cell proliferation and arrest cell cycle at G1/S transition in both cell lines. Molecular targets were selected from different levels of canonical Wnt signalling pathway (such as autocrine and antagonistic ligands, receptor, effector, cytoplasmic components, downstream targets and pathway antagonist), since they are frequently found dysregulated in all breast cancers and their aberrant activation is associated with cancer stem cell expansion. M.Co could significantly downregulate the expression of Wnt pathway agonists and upregulate that of Wnt antagonists at transcriptional and translational levels, in both cell lines. To conclude, C. oxyacantha berry extract is effective against breast cancer irrespective of its hormone dependency and cancer growth inhibition at stem cell level can be expected.


2020 ◽  
Vol 48 (W1) ◽  
pp. W494-W501 ◽  
Author(s):  
Heewon Seo ◽  
Denis Tkachuk ◽  
Chantal Ho ◽  
Anthony Mammoliti ◽  
Aria Rezaie ◽  
...  

Abstract Drug-combination data portals have recently been introduced to mine huge amounts of pharmacological data with the aim of improving current chemotherapy strategies. However, these portals have only been investigated for isolated datasets, and molecular profiles of cancer cell lines are lacking. Here we developed a cloud-based pharmacogenomics portal called SYNERGxDB (http://SYNERGxDB.ca/) that integrates multiple high-throughput drug-combination studies with molecular and pharmacological profiles of a large panel of cancer cell lines. This portal enables the identification of synergistic drug combinations through harmonization and unified computational analysis. We integrated nine of the largest drug combination datasets from both academic groups and pharmaceutical companies, resulting in 22 507 unique drug combinations (1977 unique compounds) screened against 151 cancer cell lines. This data compendium includes metabolomics, gene expression, copy number and mutation profiles of the cancer cell lines. In addition, SYNERGxDB provides analytical tools to discover effective therapeutic combinations and predictive biomarkers across cancer, including specific types. Combining molecular and pharmacological profiles, we systematically explored the large space of univariate predictors of drug synergism. SYNERGxDB constitutes a comprehensive resource that opens new avenues of research for exploring the mechanism of action for drug synergy with the potential of identifying new treatment strategies for cancer patients.


Sign in / Sign up

Export Citation Format

Share Document