scholarly journals Intracellular enhancement of BMP signaling by LIM-domain protein FHL3 controls spatiotemporal emergence of the neural crest driven by WNT signaling

2019 ◽  
Author(s):  
Mansour Alkobtawi ◽  
Patrick Pla ◽  
Anne H. Monsoro-Burq

AbstractHow multiple morphogen signals are coordinated in space and time to position key embryonic tissues remains elusive. During neural crest formation, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and WNT signaling cooperate by acting either on the paraxial mesoderm or directly on the neural border ectoderm, but how each tissue interprets this complex information remains poorly understood. Here we show that Fhl3, a scaffold LIM domain protein of previously unknown developmental function, is essential for neural crest formation by linking BMP and WNT signaling thereby positioning the neural crest-inducing signaling center in the paraxial mesoderm. During gastrulation, Fhl3 promotes Smad phosphorylation and Smad-dependent wnt8 activation specifically in the paraxial mesoderm, thus modifying the respective mesoderm or ectoderm cell response to the extracellular BMP gradient. This ensures neural border ectoderm specification by the underlying mesoderm via non-cell autonomous WNT signaling. During neurulation, neural crest inducers activate fhl3, promoting BMP/Smad-dependent WNT activity required for neural crest specification. Our findings highlight how Fhl3, acting cell-autonomously, ensures a fine spatial, temporal and germ layer-specific coordination of BMP and WNT signaling at several steps of neural crest development.Highlights:-FHL3 is a novel intracellular enhancer of BMP signaling during early development.-FHL3 ensures cross-talk between BMP and WNT signaling by Smad1-dependent wnt8 activation in the paraxial mesoderm.-FHL3 reiterated function in paraxial mesoderm and in neural border ectoderm is essential for neural crest development at the border of the neural plate.


2009 ◽  
Vol 40 (01) ◽  
Author(s):  
J Schessl ◽  
Y Zou ◽  
MJ McGrath ◽  
BS Cowling ◽  
B Maiti ◽  
...  


Metabolism ◽  
2021 ◽  
pp. 154815
Author(s):  
Maria P. Clemente-Olivo ◽  
Jayron J. Habibe ◽  
Mariska Vos ◽  
Roelof Ottenhoff ◽  
Aldo Jongejan ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tannaz Norizadeh Abbariki ◽  
Zita Gonda ◽  
Denise Kemler ◽  
Pavel Urbanek ◽  
Tabea Wagner ◽  
...  

AbstractThe process of myogenesis which operates during skeletal muscle regeneration involves the activation of muscle stem cells, the so-called satellite cells. These then give rise to proliferating progenitors, the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role for the transcriptional co-regulator nTRIP6, the nuclear isoform of the LIM-domain protein TRIP6, in the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is transiently up-regulated at the transition between proliferation and differentiation, whereas that of the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated early differentiation followed by deregulated late differentiation and fusion. Thus, the transient increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of myogenesis.



Gene ◽  
1998 ◽  
Vol 216 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Simon Ming Yuen Lee ◽  
Stephen Kwok Wing Tsui ◽  
Kwok Keung Chan ◽  
Merce Garcia-Barcelo ◽  
Mary Miu Yee Waye ◽  
...  


2019 ◽  
Author(s):  
Alec K. Gramann ◽  
Arvind M. Venkatesan ◽  
Melissa Guerin ◽  
Craig J. Ceol

AbstractPreventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.



2009 ◽  
Vol 284 (19) ◽  
pp. 13202-13212 ◽  
Author(s):  
Nicole A. Neuman ◽  
Susan Ma ◽  
Gavin R. Schnitzler ◽  
Yan Zhu ◽  
Giorgio Lagna ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document