scholarly journals High-throughput identification of MHC class I binding peptides using an ultradense peptide array

2019 ◽  
Author(s):  
Amelia K. Haj ◽  
Meghan E. Breitbach ◽  
David A. Baker ◽  
Mariel S. Mohns ◽  
Gage K. Moreno ◽  
...  

AbstractRational vaccine development and evaluation requires identifying and measuring the magnitude of epitope-specific CD8 T cell responses. However, conventional CD8 T cell epitope discovery methods are labor-intensive and do not scale well. Here, we accelerate this process by using an ultradense peptide array as a high-throughput tool for screening peptides to identify putative novel epitopes. In a single experiment, we directly assess the binding of four common Indian rhesus macaque MHC class I molecules – Mamu-A1*001, -A1*002, -B*008, and -B*017 – to approximately 61,000 8-mer, 9-mer, and 10-mer peptides derived from the full proteomes of 82 simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) isolates. Many epitope-specific CD8 T cell responses restricted by these four MHC molecules have already been identified in SIVmac239, providing an ideal dataset for validating the array; up to 64% of these known epitopes are found in the top 192 SIVmac239 peptides with the most intense MHC binding signals in our experiment. To assess whether the peptide array identified putative novel CD8 T cell epitopes, we validated the method by IFN-γ ELISPOT assay and found three novel peptides that induced CD8 T cell responses in at least two Mamu-A1*001-positive animals; two of these were validated by ex vivo tetramer staining. This high-throughput identification of peptides that bind class I MHC will enable more efficient CD8 T cell response profiling for vaccine development, particularly for pathogens with complex proteomes where few epitope-specific responses have been defined.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A644-A644
Author(s):  
John Flickinger ◽  
Jagmohan Singh ◽  
Yanki Yarman ◽  
Robert Carlson ◽  
Scott Waldman ◽  
...  

BackgroundThe Gram-positive bacterium Listeria monocytogenes (Lm) is a promising vector for cancer immunotherapy due to its ability to directly infect antigen-presenting cells, induce potent CD8+ T-cell immunity, and remodel immunosuppressive tumor microenvironments.1 Recent clinical trials have demonstrated safety and immunogenicity of Lm-based cancer vaccines in lung, cervical, pancreatic, and other cancers. In colorectal cancer, the transmembrane receptor guanylyl cyclase C (GUCY2C) is an emerging target for immunotherapy.2 Here, we examined the immunogenicity of a recombinant strain of Listeria monocytogenes secreting GUCY2C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C vaccination induced robust Lm-specific CD8+ T-cell immunity but failed to prime GUCY2C-specific CD8+ T-cell responses. These studies explore the hypothesis that immunodominant Lm antigens suppress primary immunity to subdominant GUCY2C epitopes in Lm-GUCY2CMethodsLm-GUCY2C expresses the extracellular domain of mouse GUCY2C23-429 downstream of an ActA promoter integrated into the genome of the live, attenuated delta actA delta inlB Lm strain. Altered peptide ligands were designed based on NetMHCpan 4.0 peptide-MHC binding algorithms and similarly cloned into Lm. Peptide-MHC class I complex stability was quantified by FACS-based surface peptide-MHC dissociation on the TAP-deficient cell line, RMA-S H-2Kd.3In vivo efficacy studies employed IFNγ-ELISpot quantification of T-cell responses and tumor challenge studies with the CT26 colorectal cancer cell line. Adenovirus expressing GUCY2C was used as a positive control.2 4ResultsLm-GUCY2C vaccination of BALB/c mice generated Lm-specific CD8+ T-cell responses but an absence of GUCY2C-specific immunity. Peptide-MHC stability studies revealed poor stability of the dominant GUCY2C254-262 epitope complexed with H-2Kd compared to H-2Kd-restricted Lm epitopes derived from the LLO and p60 Lm antigens. Mutation of the GUCY2C254-262 peptide at critical anchoring residues for binding H-2Kd revealed that the altered peptide ligand with an F255Y mutation significantly improved the stability of the GUCY2C254-262-H-2Kd complex. Similarly, vaccination of mice with recombinant Lm-GUCY2C expressing the altered peptide ligand (Lm-GUCY2CF255Y) restored GUCY2C immunogenicity and antitumor immunity.ConclusionsImmunodominant Lm antigens may interfere with immune responses directed to the vaccine target antigen GUCY2C by competing with GUCY2C epitope for MHC class I binding and presentation. Moreover, use of a substituted GUCY2C -peptide ligand with enhanced peptide-MHC class I stability restored GUCY2C-specific immunity in the context of Lm-GUCY2C, an approach that can be translated to patients. Importantly, these studies also suggest that ongoing Lm-based vaccine development programs targeting a variety of antigens in other cancer types may be similarly limited by the immunodominance of Lm epitopes.AcknowledgementsThe authors thank Dr. Peter Lauer for providing the pPL2 integration vector used in cloning Lm-GUCY2C and Dr. Sean Murphy for providing the RMA-S H-2Kd cell line.Ethics ApprovalStudies were approved by the Thomas Jefferson University IACUC (Protocol # 01956).ReferencesFlickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines (Basel) 2018;6. doi:10.3390/vaccines6030048.Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC, Hyslop T, et al. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer 2019;7:104. doi:10.1186/s40425-019-0576-2.Müllbacher A, Lobigs M, Kos FJ, Langman R. Alloreactive cytotoxic T-cell function, peptide nonspecific. Scand J Immunol 1999;49:563–9.Flickinger J. JC, Singh J, Carlson R, Leong E, Baybutt T, Barton J, et al. Chimeric Ad5.F35 vector evades anti-adenovirus serotype 5 neutralization opposing GUCY2C-targeted antitumor immunity. J Immunother Cancer 2020.


2003 ◽  
Vol 52 (12) ◽  
pp. 771-779 ◽  
Author(s):  
Panagiota A. Sotiropoulou ◽  
Sonia A. Perez ◽  
Volfgang Voelter ◽  
Hartmut Echner ◽  
Ioannis Missitzis ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Elizabeth K. Duperret ◽  
Alfredo Perales-Puchalt ◽  
Regina Stoltz ◽  
Hiranjith G.H. ◽  
Nitin Mandloi ◽  
...  

2008 ◽  
Vol 180 (3) ◽  
pp. 1704-1712 ◽  
Author(s):  
Charles F. Towne ◽  
Ian A. York ◽  
Joost Neijssen ◽  
Margaret L. Karow ◽  
Andrew J. Murphy ◽  
...  

2005 ◽  
Vol 79 (2) ◽  
pp. 684-695 ◽  
Author(s):  
Miranda Z. Smith ◽  
C. Jane Dale ◽  
Robert De Rose ◽  
Ivan Stratov ◽  
Caroline S. Fernandez ◽  
...  

ABSTRACT Successful human immunodeficiency virus (HIV) vaccines will need to induce effective T-cell immunity. We studied immunodominant simian immunodeficiency virus (SIV) Gag-specific T-cell responses and their restricting major histocompatibility complex (MHC) class I alleles in pigtail macaques (Macaca nemestrina), an increasingly common primate model for the study of HIV infection of humans. CD8+ T-cell responses to an SIV epitope, Gag164 - 172KP9, were present in at least 15 of 36 outbred pigtail macaques. The immunodominant KP9-specific response accounted for the majority (mean, 63%) of the SIV Gag response. Sequencing from six macaques identified 7 new Mane-A and 13 new Mane-B MHC class I alleles. One new allele, Mane-A*10, was common to four macaques that responded to the KP9 epitope. We adapted reference strand-mediated conformational analysis (RSCA) to MHC class I genotype M. nemestrina. Mane-A*10 was detected in macaques presenting KP9 studied by RSCA but was absent from non-KP9-presenting macaques. Expressed on class I-deficient cells, Mane-A*10, but not other pigtail macaque MHC class I molecules, efficiently presented KP9 to responder T cells, confirming that Mane-A*10 restricts the KP9 epitope. Importantly, naïve pigtail macaques infected with SIVmac251 that respond to KP9 had significantly reduced plasma SIV viral levels (log10 0.87 copies/ml; P = 0.025) compared to those of macaques not responding to KP9. The identification of this common M. nemestrina MHC class I allele restricting a functionally important immunodominant SIV Gag epitope establishes a basis for studying CD8+ T-cell responses against AIDS in an important, widely available nonhuman primate species.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e22939 ◽  
Author(s):  
Tania G. Rodríguez-Cruz ◽  
Shujuan Liu ◽  
Jahan S. Khalili ◽  
Mayra Whittington ◽  
Minying Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document