scholarly journals Predicting coral adaptation to global warming in the Indo-West-Pacific

2019 ◽  
Author(s):  
Mikhail V. Matz ◽  
Eric Treml ◽  
Benjamin C. Haller

ABSTRACTThe potential of reef-building corals to adapt to increasing sea surface temperatures is often speculated about but has rarely been comprehensively modeled on a region-wide scale. Here, we used individual-based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo-West Pacific. We find that in the first century of warming (approximately from 50 years ago to 50 years in the future) corals adapt rapidly by redistributing pre-existing adaptive alleles among populations (“genetic rescue”). In this way, some coral populations - most notably, Vietnam, Japan, Taiwan, New Caledonia, and the southern half of the Great Barrier Reef - appear to be able to maintain their fitness even under the worst warming scenarios (at least in theory, assuming the rate of evolution is the only limitation to local coral recovery). Still, survival of the majority of reefs in the region critically depends on the warming rate, underscoring the urgent need to curb carbon emissions. Conveniently, corals’ adaptive potential was largely independent of poorly known genetic parameters and could be predicted based on a simple metric derived from the biophysical connectivity model: the proportion of recruits immigrating from warmer locations. We have confirmed that this metric correlates with actual coral cover changes throughout the region, based on published reef survey data from the 1970s to early 2000s. The new metric allows planning assisted gene flow interventions to facilitate adaptation of specific coral populations.

Hydrobiologia ◽  
2021 ◽  
Author(s):  
L. Saponari ◽  
I. Dehnert ◽  
P. Galli ◽  
S. Montano

AbstractCorallivory causes considerable damage to coral reefs and can exacerbate other disturbances. Among coral predators, Drupella spp. are considered as delayer of coral recovery in the Republic of Maldives, although little information is available on their ecology. Thus, we aimed to assess their population structure, feeding behaviour and spatial distribution around 2 years after a coral bleaching event in 2016. Biological and environmental data were collected using belt and line intercept transects in six shallow reefs in Maldives. The snails occurred in aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2. However, their occurrence was significantly different at the reef scale with the highest densities found in locations with higher coral cover. The impact of Drupella spp. appeared to be minimal with the population suffering from the loss of coral cover. We suggest that monitoring programs collect temporal- and spatial-scale data on non-outbreaking populations or non-aggregating populations to understand the dynamics of predation related to the co-occurrence of anthropogenic and natural impacts.


2017 ◽  
Vol 68 (11) ◽  
pp. 2123 ◽  
Author(s):  
I. Beveridge ◽  
T. H. Cribb ◽  
S. C. Cutmore

During a helminthological examination of teleost fish of Moreton Bay (Qld, Australia), 976 fish from 13 orders, 57 families and 133 species were examined and nine species of trypanorhynch metacestodes were identified. Callitetrarhynchus gracilis (Rudolphi, 1819) was the most frequently encountered species, found in 16 species of fish, with Callitetrarhynchus speciosus (Linton, 1897), Pterobothrium pearsoni (Southwell, 1929), Otobothrium alexanderi Palm, 2004, Otobothrium mugilis Hiscock, 1954, Otobothrium parvum Beveridge & Justine, 2007, Proemotobothrium southwelli Beveridge & Campbell, 2001, Pseudotobothrium dipsacum (Linton, 1897) and Heteronybelinia cf. heteromorphi Palm, 1999 occurring in fewer host species and at lower prevalences. Comparisons are made with studies elsewhere in the world and specifically within the South-west Pacific. Of the best studied regions in the South-west Pacific (Heron Island, Lizard Island, New Caledonia and now Moreton Bay), the fauna from Moreton Bay was found to be the most distinctive, with fauna from the three reef locations sharing 35–48% of species between sites and just 12–24% with Moreton Bay. The fauna of trypanorhynch cestodes from Lizard Island and New Caledonia was found to be the most similar.


2016 ◽  
Author(s):  
Sophie Bonnet ◽  
Melika Baklouti ◽  
Audrey Gimenez ◽  
Hugo Berthelot ◽  
Ilana Berman-Frank

Abstract. In marine ecosystems, N2 fixation provides the predominant external source of nitrogen (N) (140 ± 50 Tg N yr−1), contributing more than atmospheric and riverine inputs to the N supply. Yet the fate and magnitude of the newly-fixed N, or diazotroph-derived N (hereafter named DDN) in marine ecosystems is poorly understood. Moreover, it remains unclear whether the DDN is preferentially directly exported out of the photic zone, recycled by the microbial loop, and/or transferred into larger organisms, subsequently enhancing indirect particle export. These questions were investigated in the framework of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume (~50 m3) mesocosms were deployed in the tropical South West Pacific coastal ocean (New Caledonia) to maintain a stable water-mass without disturbing ambient light and temperature conditions. The mesocosms were intentionally fertilized with ~0.8 μM dissolved inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment (days 2–14) followed by a bloom of UCYN-C during the second half of the experiment (days 15–23). These conditions provided a unique opportunity to compare the DDN transfer and export efficiency associated with different diazotrophs. Here we summarize the major experimental and modelling results obtained during the project and described in the VAHINE Special issue, in particular those regarding the evolution of the main standing stocks, fluxes and biological characteristics over the 23-days experiment, the contribution of N2 fixation to export fluxes, the DDN released to dissolved pool and its transfer to the planktonic food web (bacteria, phytoplankton, zooplankton). We then apply our Eco3M modelling platform further to infer the fate of DDN in the ecosystem and role of N2 fixation on productivity, food web structure and carbon export. Recommendations for future work are finally provided in the conclusion section.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 338
Author(s):  
Xochitl E. Elías Ilosvay ◽  
Ameris I. Contreras-Silva ◽  
Lorenzo Alvarez-Filip ◽  
Christian Wild

In 2005, an extreme heatwave hit the Wider Caribbean, followed by 13 hurricanes (including hurricanes Emily and Wilma) that caused significant loss in hard coral cover. However, the drivers of the potential recovery are yet to be fully understood. Based on recent findings in the literature of coral cover recovery in the Mexican Caribbean after the mass bleaching event and associated hurricanes in 2005, this study analyzed, through random-effects meta-analysis, the hard coral and macroalgae benthic development and potential drivers of change between 2005 and 2016 in the Mexican Caribbean. Therefore, we tested the relative effect of sea surface temperature (SST), chlorophyll-a water concentration, coastal human population development, reef distance to shore, and geographical location on both hard coral and macroalgae cover over time. Findings revealed increases of both hard coral (by 6%) and algae cover (by ca. 14%, i.e., almost three times the increase of corals) over 12 years. Although our findings confirm the partial coral recovery after the 2005 Caribbean mass coral mortality event, they also indicate rapid colonization of algae across the region. Surprisingly, only SST correlated negatively with changes in coral cover. Contrary to expectations, there was a significantly greater algae cover increase in the Central section of the Mexican Caribbean, which is characterized by a low population density. However, a constant discharge of nutrient-rich freshwater may have facilitated algae growth there. This study reports partial regional reef recovery, but it also indicates that local factors, particularly eutrophication, facilitate algae growth at a speed that is much faster than coral recovery.


Zootaxa ◽  
2018 ◽  
Vol 4377 (2) ◽  
pp. 178 ◽  
Author(s):  
TOMOHIRO YOSHIDA ◽  
HIROYUKI MOTOMURA

Rhabdamia spilota Allen & Kuiter 1994 (Apogonidae), a poorly known cardinalfish previously known only from the Philippines, Indonesia and the Red Sea, is redescribed on the basis of 70 specimens (20.9–61.2 mm standard length) (including types), from the Indo-West Pacific (Red Sea, Andaman Sea, Japan, South China Sea, the Philippines, Indonesia, New Caledonia, and Australia). Because most reports of the similar species R. gracilis (Bleeker 1856), following its original description, were based on misidentifications, R. gracilis is also redescribed (based on 98 Indo-West Pacific specimens from Seychelles, Maldives, Andaman Sea, Japan, Malaysia, Indonesia, New Caledonia, and Australia, 27.9–59.3 mm standard length); a lectotype is designated for it. Rhabdamia spilota differs from R. gracilis in having 27–33 (mode 30–31) developed gill rakers [vs. 22–27 (mode 24) in the latter], 27–33 (30) gill rakers including rudiments [vs. 23–27 (24–25)], a black stripe from the jaw tips to the anterior margin of the orbit (vs. black pigments only at snout and tip of lower jaw), 3–6 reddish brown to blackish blotches on the opercle and anterior of body (vs. blotches absent), and indistinct black pigment restricted to caudal fin outer margins (vs. pigment scattered over entire fin). Rhabdamia gracilis exhibits sexual dichromatism, female specimens larger than 41.3 mm SL having one or two black stripes on the lateral surface of the body; the stripes are absent in males and smaller females. No evidence of sexual dichromatism was found in R. spilota. 


1983 ◽  
Vol 31 (6) ◽  
pp. 943 ◽  
Author(s):  
MB Malipatil ◽  
GB Monteith

Austrovelia, gen. nov. (type-species A. queenslandica, sp. nov., from North Queensland), A. caledonica, sp. nov. (from New Caledonia), and Phrynovelia caledonica, sp. nov., and P. bimaculata, sp. nov. (both from New Caledonia) are described and compared with related known genera and species. Altitudinal distribution of A, queenslandica and biogeographic affinities between New Caledonia and the Mount Sorrow tableland in North Queensland are discussed, and a generalized distribution of terrestrial Mesoveliidae in the south-west Pacific is given.


Zootaxa ◽  
2018 ◽  
Vol 4434 (2) ◽  
pp. 201
Author(s):  
GARY M. BARKER

Athoracophoridae are succineoidean terrestrial slugs that constitute a distinctive faunal element of the South West Pacific biogeographic region, with representatives in New Guinea, Australia, New Caledonia, Vanuatu and New Zealand. Despite many studies on morphology, taxonomy and phylogenetic relationships since the first species description in 1832, the understanding of the diversity within the family, as reported in published literature, remains poor with regional disparities in collection and systematic effort, in taxonomic concepts, and in adherence to type concepts. The systematics of Athoracophoridae needs to be re-evaluated through a modern, phylogenetic approach to properly document infra-familial evolution and taxon diversity, advance understanding of evolutionary relationships with other Eupulmonata, and to delineate evolutionary units for conservation prioritization. A catalogue of all class-, family-, genus- and species-group names erected for or used to include Athoracophoridae over the 185 year period 1832 to 2017 is provided, as a first step towards a systematic revision. The following nomenclatural changes are made: lectotype designation for Aneitea macdonaldii Gray, 1860; lectotype designation for Janella papillata Hutton, 1879; type species designation for Amphikonophora Suter, 1897; and lectotype designation for Athoracophorus verrucosus Simroth, 1889. 


2014 ◽  
Vol 281 (1796) ◽  
pp. 20142018 ◽  
Author(s):  
Chris T. Perry ◽  
Gary N. Murphy ◽  
Paul S. Kench ◽  
Evan N. Edinger ◽  
Scott G. Smithers ◽  
...  

Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates—a key carbonate cycling process—have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO 3 m −2 yr −1 ) (range 0.96–3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted.


Zootaxa ◽  
2004 ◽  
Vol 778 (1) ◽  
pp. 1 ◽  
Author(s):  
KATHRYN A. HALL ◽  
THOMAS H. CRIBB

We describe 2 new species of Affecauda from the intestine of acanthuroid fishes of the Indo-West Pacific.  Affecauda rugosa n. sp. is described from 1 mature specimen in excellent condition and 1 immature fractured specimen from the intestine of the sailfin tang, Zebrasoma veliferum (Acanthuridae), from Noumea, New Caledonia.  Affecauda salacia n. sp. is described from the intestine of the ocellated spinefoot, Siganus corallinus (Siganidae), from Lizard Island, Great Barrier Reef, Queensland, Australia.  Each of these species is made distinct from the type-species, Affecauda annulata Hall & Chambers, 1999, by combinations of the extent of tegumental annulations, conformation of the oesophagus and position of the ovary.  The description of 2 new species of Affecauda necessitates a revision of the generic diagnosis, which is here amended to incorporate the additional species.  A key to species is provided.  The description of further species of Affecauda from waters external to the Great Barrier Reef and from siganid fishes expands the biogeographical range for species of Affecauda, from species of Naso on the Great Barrier Reef, to acanthuroid fishes of the western Pacific.


Sign in / Sign up

Export Citation Format

Share Document