scholarly journals Representation of uncertainty in macaque visual cortex

2019 ◽  
Author(s):  
Olivier J. Hénaff ◽  
Zoe M. Boundy-Singer ◽  
Kristof Meding ◽  
Corey M. Ziemba ◽  
Robbe L. T. Goris

Uncertainty is intrinsic to perception. Neural circuits which process sensory information must therefore also represent the reliability of this information. How they do so is a topic of debate. We propose a view of visual cortex in which average neural response strength encodes stimulus features, while cross-neuron variability in response gain encodes the uncertainty of these features. To test our theory, we studied spiking activity of neurons in macaque V1 and V2 elicited by repeated presentations of stimuli whose uncertainty was manipulated in distinct ways. We show that gain variability of individual neurons is tuned to stimulus uncertainty, that this tuning is invariant to the source of uncertainty, and that it is specific to the features encoded by these neurons. We demonstrate that this behavior naturally arises from known gain-control mechanisms, and derive how downstream circuits can jointly decode stimulus features and their uncertainty from sensory population activity.

1999 ◽  
Vol 202 (10) ◽  
pp. 1281-1289 ◽  
Author(s):  
G.J. Rose ◽  
E.S. Fortune

Temporal patterns of sensory information are important cues in behaviors ranging from spatial analyses to communication. Neural representations of the temporal structure of sensory signals include fluctuations in the discharge rate of neurons over time (peripheral nervous system) and the differential level of activity in neurons tuned to particular temporal features (temporal filters in the central nervous system). This paper presents our current understanding of the mechanisms responsible for the transformations between these representations in electric fish of the genus Eigenmannia. The roles of passive and active membrane properties of neurons, and frequency-dependent gain-control mechanisms are discussed.


2019 ◽  
Author(s):  
R.S. van Bergen ◽  
J.F.M. Jehee

AbstractHow does the brain represent the reliability of its sensory evidence? Here, we test whether sensory uncertainty is encoded in cortical population activity as the width of a probability distribution – a hypothesis that lies at the heart of Bayesian models of neural coding. We probe the neural representation of uncertainty by capitalizing on a well-known behavioral bias called serial dependence. Human observers of either sex reported the orientation of stimuli presented in sequence, while activity in visual cortex was measured with fMRI. We decoded probability distributions from population-level activity and found that serial dependence effects in behavior are consistent with a statistically advantageous sensory integration strategy, in which uncertain sensory information is given less weight. More fundamentally, our results suggest that probability distributions decoded from human visual cortex reflect the sensory uncertainty that observers rely on in their decisions, providing critical evidence for Bayesian theories of perception.


2020 ◽  
Vol 30 (6) ◽  
pp. 3686-3703 ◽  
Author(s):  
C Gundlach ◽  
S Moratti ◽  
N Forschack ◽  
M M Müller

Abstract The capacity-limited human brain is constantly confronted with a huge amount of sensory information. Selective attention is needed for biasing neural processing towards relevant information and consequently allows meaningful interaction with the environment. Activity in the alpha-band has been proposed to be related to top-down modulation of neural inhibition and could thus represent a viable candidate to control the priority of stimulus processing. It is, however, unknown whether modulations in the alpha-band directly relate to changes in the sensory gain control of the early visual cortex. Here, we used a spatial cueing paradigm while simultaneously measuring ongoing alpha-band oscillations and steady-state visual evoked potentials (SSVEPs) as a marker of continuous early sensory processing in the human visual cortex. Thereby, the effects of spatial attention for both of these signals and their potential interactions were assessed. As expected, spatial attention modulated both alpha-band and SSVEP responses. However, their modulations were independent of each other and the corresponding activity profiles differed across task demands. Thus, our results challenge the view that modulations of alpha-band activity represent a mechanism that directly alters or controls sensory gain. The potential role of alpha-band oscillations beyond sensory processing will be discussed in light of the present results.


2019 ◽  
Author(s):  
Ehsan Kheradpezhouh ◽  
Matthew F. Tang ◽  
Jason B. Mattingley ◽  
Ehsan Arabzadeh

AbstractTransient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel, which is broadly expressed throughout the body. Despite its expression in the mammalian cortex, little is known about the contribution of TRPA1 to cortical function. Here we investigate the role of TRPA1 in sensory information processing by performing electrophysiological recording and 2-photon calcium imaging from two sensory areas in mice: the primary vibrissal somatosensory cortex (vS1) and the primary visual cortex (V1). In vS1, local activation of TRPA1 by its agonist AITC significantly increased the spontaneous activity of cortical neurons, their evoked response to vibrissal stimulation, and their response range, consistent with a positive gain modulation. TRPA1 inhibition with HC-030031 reversed these modulations to below initial control gains. The gain modulations were absent in TRPA1 Knockout mice. In V1, TRPA1 activation increased the gain of direction and orientation selectivity similarly to the gain modulations observed in vS1 cortex. Linear decoding analysis of V1 population activity confirmed faster and more reliable encoding of visual signals in the presence of TRPA1 activation. Overall, our findings reveal a physiological role for TRPA1 in enhancing sensory signals in the mammalian cortex.


1996 ◽  
Vol 8 (6) ◽  
pp. 603-625 ◽  
Author(s):  
Pieter R. Roelfsema ◽  
Andreas K. Engel ◽  
Peter König ◽  
Wolf Singer

Recent experimental results in the visual cortex of cats and monkeys have suggested an important role for synchronization of neuronal activity on a millisecond time scale. Synchronization has been found to occur selectively between neuronal responses to related image components. This suggests that not only the firing rates of neurons but also the relative timing of their action potentials is used as a coding dimension. Thus, a powerful relational code would be available, in addition to the rate code, for the representation of perceptual objects. This could alleviate difficulties in the simultaneous representation of multiple objects. In this article we present a set of theoretical arguments and predictions concerning the mechanisms that could group neurons responding to related image components into coherently active aggregates. Synchrony is likely to be mediated by synchronizing connections; we introduce the concept of an interaction skeleton to refer to the subset of synchronizing connections that are rendered effective by a particular stimulus configuration. If the image is segmented into objects, these objects can typically be segmented further into their constituent parts. The synchronization behavior of neurons that represent the various image components may accurately reflect this hierarchical clustering. We propose that the range of synchronizing interactions is a dynamic parameter of the cortical network, so that the grain of the resultant grouping process may be adapted to the actual behavioral requirements. It can be argued that different aspects of purposeful behavior rely on separable processes by which sensory input is transformed into adjustments of motor activity. Indeed, neurophysiological evidence has suggested separate processing streams originating in the primary visual cortex for object identification and sensorimotor coordination. However, such a separation calls for a mechanism that avoids interference effects in the presence of multiple objects, or when multiple motor programs are simultaneously prepared. In this article we suggest that synchronization between responses of neurons in both the visual cortex and in areas that are involved in response selection and execution might allow for a selective routing of sensory information to the appropriate motor program.


2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


1982 ◽  
Vol 4 (3) ◽  
pp. 81-98

An evoked potential (EP) is the electrical response of the CNS to an external stimulus. Each EP may be represented as a sequence of waves, the amplitude and length of which reflect the conduction and processing of sensory information through the CNS. Visual, auditory, and somatic EP are used clinically in pediatrics. Visual evoked potentials are the responses recorded from the occipital cortex of the scalp near the primary visual cortex to a stroboscopic light flash. The occipital potential orginates in the retina. This study can be used to assess the functional integrity of the visual system. Visual acuity can be assessed using refractive correction to enhance the amplitude of the recorded response in small children.


2021 ◽  
Author(s):  
Muzahid Islam ◽  
Sudhakar Deeti ◽  
Zakia Mahmudah ◽  
J. Frances Kamhi ◽  
Ken Cheng

ABSTRACTMany animals navigate in a structurally complex environment which requires them to detour around physical barriers that they encounter. While many studies in animal cognition suggest that they are able to adeptly avoid obstacles, it is unclear whether a new route is learned to navigate around these barriers and, if so, what sensory information may be used to do so. We investigated detour learning ability in the Australian bull ant, Myrmecia midas, which primarily uses visual landmarks to navigate. We first placed a barrier on the ants’ natural path of their foraging tree. Initially, 46% of foragers were unsuccessful in detouring the obstacle. In subsequent trips, the ants became more successful and established a new route. We observed up to eight successful foraging trips detouring around the barrier. When we subsequently changed the position of the barrier, made a new gap in the middle of the obstacle, or removed the barrier altogether, ants mostly maintained their learned motor routine, detouring with a similar path as before, suggesting that foragers were not relying on barrier cues and therefore learned a new route around the obstacle. In additional trials, when foragers encountered new olfactory or tactile cues, or the visual environment was blocked, their navigation was profoundly disrupted. These results suggest that changing sensory information, even in modalities that foragers do not usually need for navigation, drastically affects the foragers’ ability to successful navigate.Subject CategoryNeuroscience and Cognition


2021 ◽  
Author(s):  
Ye Li ◽  
William Bosking ◽  
Michael S Beauchamp ◽  
Sameer A Sheth ◽  
Daniel Yoshor ◽  
...  

Narrowband gamma oscillations (NBG: ~20-60Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. Consequently, the amplitude and frequency of induced NBG activity is highly sensitive to these stimulus features. For example, in the non-human primate, NBG displays biases in orientation and color tuning at the population level. Such biases may relate to recent reports describing the large-scale organization of single-cell orientation and color tuning in visual cortex, thus providing a potential bridge between measurements made at different scales. Similar biases in NBG population tuning have been predicted to exist in the human visual cortex, but this has yet to be fully examined. Using intracranial recordings from human visual cortex, we investigated the tuning of NBG to orientation and color, both independently and in conjunction. NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. These data both elaborate on the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases in visual cortex, adding to a growing set of stimulus dependencies associated with the genesis of NBG. Together, these two factors may provide a fruitful testing ground for examining multi-scale models of brain activity, and impose new constraints on the functional significance of the visual gamma rhythm.


Author(s):  
Samantha Hughes ◽  
Tansu Celikel

From single-cell organisms to complex neural networks, all evolved to provide control solutions to generate context and goal-specific actions. Neural circuits performing sensorimotor computation to drive navigation employ inhibitory control as a gating mechanism, as they hierarchically transform (multi)sensory information into motor actions. Here, we focus on this literature to critically discuss the proposition that prominent inhibitory projections form sensorimotor circuits. After reviewing the neural circuits of navigation across various invertebrate species, we argue that with increased neural circuit complexity and the emergence of parallel computations inhibitory circuits acquire new functions. The contribution of inhibitory neurotransmission for navigation goes beyond shaping the communication that drives motor neurons, instead, include encoding of emergent sensorimotor representations. A mechanistic understanding of the neural circuits performing sensorimotor computations in invertebrates will unravel the minimum circuit requirements driving adaptive navigation.


Sign in / Sign up

Export Citation Format

Share Document