scholarly journals DNA unwinding mechanism of a eukaryotic replicative CMG helicase

2019 ◽  
Author(s):  
Zuanning Yuan ◽  
Roxana Georgescu ◽  
Lin Bai ◽  
Dan Zhang ◽  
Huilin Li ◽  
...  

ABSTRACTHigh-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understand the unwinding mechanism. The eukaryotic replicative CMG helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the OB fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 Å, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a separation pin, unwinding is achieved via a “dam-and-diversion tunnel” for steric exclusion unwinding. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation.

2017 ◽  
Vol 114 (16) ◽  
pp. 4141-4146 ◽  
Author(s):  
Jin Chuan Zhou ◽  
Agnieszka Janska ◽  
Panchali Goswami ◽  
Ludovic Renault ◽  
Ferdos Abid Ali ◽  
...  

The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45–MCM–GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG–Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.


2018 ◽  
Author(s):  
Justin L. Sparks ◽  
Alan O. Gao ◽  
Markus Räschle ◽  
Nicolai B. Larsen ◽  
Matthias Mann ◽  
...  

SummaryCovalent and non-covalent nucleoprotein complexes impede replication fork progression and thereby threaten genome integrity. UsingXenopus laevisegg extracts, we previously showed that when a replication fork encounters a covalent DNA-protein cross-link (DPC) on the leading strand template, the DPC is degraded to a short peptide, allowing its bypass by translesion synthesis polymerases. Strikingly, we show here that when DPC proteolysis is blocked, the replicative DNA helicase (CMG), which travels on the leading strand template, still bypasses the intact DPC. The DNA helicase RTEL1 facilitates bypass, apparently by translocating along the lagging strand template and generating single-stranded DNA downstream of the DPC. Remarkably, RTEL1 is required for efficient DPC proteolysis, suggesting that CMG bypass of a DPC normally precedes its proteolysis. RTEL1 also promotes fork progression past non-covalent protein-DNA complexes. Our data suggest a unified model for the replisome’s response to nucleoprotein barriers.


2020 ◽  
Author(s):  
Karel Naiman ◽  
Eduard Campillo-Funollet ◽  
Adam T. Watson ◽  
Alice Budden ◽  
Izumi Miyabe ◽  
...  

AbstractDNA replication fidelity is essential for maintaining genetic stability. Forks arrested at replication fork barriers can be stabilised by the intra-S phase checkpoint, subsequently being rescued by a converging fork, or resuming when the barrier is removed. However, some arrested forks cannot be stabilised and fork convergence cannot rescue in all situations. Thus, cells have developed homologous recombination-dependent mechanisms to restart persistently inactive forks. To understand HR-restart we use polymerase usage sequencing to visualize in vivo replication dynamics at an S. pombe replication barrier, RTS1, and model replication by Monte Carlo simulation. We show that HR-restarted forks synthesise both strands with Pol δ for up to 30 kb without maturing to a δ/ε configuration and that Pol α is not used significantly on either strand, suggesting the lagging strand template remains as a gap that is filled in by Pol δ later. We further demonstrate that HR-restarted forks progress uninterrupted through a fork barrier that arrests canonical forks. Finally, by manipulating lagging strand resection during HR-restart by deleting pku70, we show that the leading strand initiates replication at the same position, signifying the stability of the 3’ single strand in the context of increased resection.


Science ◽  
2019 ◽  
Vol 363 (6429) ◽  
pp. eaav7003 ◽  
Author(s):  
Yang Gao ◽  
Yanxiang Cui ◽  
Tara Fox ◽  
Shiqiang Lin ◽  
Huaibin Wang ◽  
...  

Visualization in atomic detail of the replisome that performs concerted leading– and lagging–DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo–electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A β hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.


2020 ◽  
Vol 48 (18) ◽  
pp. 10353-10367
Author(s):  
Jan-Gert Brüning ◽  
Kenneth J Marians

Abstract The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.


2000 ◽  
Vol 20 (15) ◽  
pp. 5777-5787 ◽  
Author(s):  
Markus Gruber ◽  
Ralf Erik Wellinger ◽  
José M. Sogo

ABSTRACT Every unit of the rRNA gene cluster of Saccharomyces cerevisiae contains a unique site, termed the replication fork barrier (RFB), where progressing replication forks are stalled in a polar manner. In this work, we determined the positions of the nascent strands at the RFB at nucleotide resolution. Within anHpaI-HindIII fragment essential for the RFB, a major and two closely spaced minor arrest sites were found. In the majority of molecules, the stalled lagging strand was completely processed and the discontinuously synthesized nascent lagging strand was extended three bases farther than the continuously synthesized leading strand. A model explaining these findings is presented. Our analysis included for the first time the use of T4 endonuclease VII, an enzyme recognizing branched DNA molecules. This enzyme cleaved predominantly in the newly synthesized homologous arms, thereby specifically releasing the leading arm.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 411-414 ◽  
Author(s):  
A J Gordon ◽  
J A Halliday

Abstract Complex mutational events, including de novo inversion with deletion and duplication of sequence, have been observed but are difficult to model. We propose that nascent leading-strand misalignment upon the lagging-strand template during DNA replication can result in the inversion of sequence. The positioning of this misalignment and of the realignment of the leading strand back into the leading-strand template will determine if the inversion is accompanied by deletion and duplication of sequence. We suggest that such strand misalignment-realignment events may occur at the replication fork during concurrent DNA replication.


Author(s):  
Domagoj Baretić ◽  
Michael Jenkyn-Bedford ◽  
Valentina Aria ◽  
Giuseppe Cannone ◽  
Mark Skehel ◽  
...  

AbstractThe eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), that have important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3-3.5 Å resolution cryo-EM structures comprising CMG, Ctf4, Csm3/Tof1 and Mrc1 at a replication fork. The structures provide high-resolution views of CMG:DNA interactions, revealing the mechanism of strand separation. Furthermore, they illustrate the topology of Mrc1 in the replisome and show Csm3/Tof1 ‘grips’ duplex DNA ahead of CMG via a network of interactions that are important for efficient replication fork pausing. Our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


2018 ◽  
Author(s):  
Sarina Y. Porcella ◽  
Natasha C. Koussa ◽  
Colin P. Tang ◽  
Daphne N. Kramer ◽  
Priyanka Srivastava ◽  
...  

AbstractDuring eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.Author summaryHalf of each eukaryotic genome is replicated continuously as the leading strand, while the other half is synthesized discontinuously as Okazaki fragments on the lagging strand. The bulk of DNA replication is completed by DNA polymerases ε and δ on the leading and lagging strand respectively, while synthesis on each strand is initiated by DNA polymerase α-primase (Pol α). Using the model eukaryote S. cerevisiae, we modulate cellular levels of Pol α and interrogate the impact of this perturbation on both replication initiation on DNA synthesis and cellular viability. We observe that Pol α can associate dynamically at the replication fork for initiation on both strands. Although the initiation of both strands is widely thought to be mechanistically similar, we determine that Ctf4, a hub that connects proteins to the replication fork, stimulates lagging-strand priming to a greater extent than leading-strand initiation. We also find that decreased leading-strand initiation results in a checkpoint response that is necessary for viability when Pol α is limiting. Because the DNA replication machinery is highly conserved from budding yeast to humans, this research provides insights into how DNA replication is accomplished throughout eukaryotes.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Sign in / Sign up

Export Citation Format

Share Document